

Land at Balerno Level 2 Flood Risk Assessment and Outline Drainage Strategy

> Report prepared by: Ecus Ltd. 22 Forth Street Edinburgh EH1 3LH

> > 0131 500 3874

November 2019

Ecus I	Ltd
--------	-----

Report to:

Land at Balerno Report Title: Level 2 Flood Risk Assessment and Outline Drainage Strategy Revision: 1.0 Issue Date: November 2019 13582 - Land at Balerno FRA and DS Report Ref: v1.0.docx Originated By: Jula. Jamie Eden Assistant Flood Risk and Drainage Engineer Water and Environment 01 November 2019 Date: Jesse Godwin Reviewed By: Flood Risk and Drainage Engineer **Principal Engineer** Date: 07 November 2019

Hungh Kige

Approved By:

Hannah Page **Regional Manager**

20 November 2019 Date:

> Prepared by: Ecus Ltd. 22 Forth Street Edinburgh EH1 3LH

0131 550 3874

Version	Author	Description	Date
0.1	JE	First Draft	01/11/2019
0.2	JG	QA1	07/11/2019
0.3	JE	Production of D2	08/11/2019
0.4	HP	QA2	20/11/2019
0.5	JE	Production of D3	21/11/2019
1.0	HP	Issue of Draft for Client Review	22/11/2019

The report and the Site assessments carried out by Ecus on behalf of the client in accordance with the agreed terms of contract and/or written agreement form the agreed Services. The Services were performed by Ecus with the skill and care ordinarily exercised by a reasonable Environmental Consultant at the time the Services were performed. Further, and in particular, the Services were performed by Ecus taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between Ecus and the client.

Other than that expressly contained in the paragraph above, Ecus provides no other representation or warranty whether express or implied, in relation to the services.

This report is produced exclusively for the purposes of the client. Ecus is not aware of any interest of or reliance by any party other than the client in or on the services. Unless expressly provided in writing, Ecus does not authorise, consent or condone any party other than the client relying upon the services provided. Any reliance on the services or any part of the services by any party other than the client is made wholly at that party's own and sole risk and Ecus disclaims any liability to such parties.

This report is based on Site conditions, regulatory or other legal provisions, technology or economic conditions at the time of the Service provision. These conditions can change with time and reliance on the findings of the Services under changing conditions should be reviewed.

Ecus accepts no responsibility for the accuracy of third party data used in this report.

Contents

EXECU.	TIVE SUMMARY	3
	od Risk face Water Drainage Strategy	
1. INT	RODUCTION	4
1.2 1.3 1.4 1.5 1.6	PROPOSED DEVELOPMENT REGULATORY POLICY AND LEGISLATION SCOPE OF FLOOD RISK ASSESSMENT SCOPE OF DRAINAGE STRATEGY CONSULTATION WITH LEAD LOCAL FLOOD AUTHORITY	4 7 7
2. ME	THODOLOGY	9
2.1		9
3. DE	VELOPMENT DESCRIPTION AND LOCATION	10
Ge Hyd Hyd Exi Site	SITE LOCATION CURRENT SITE CONDITIONS bund Cover and Topography ology drogeology drology sting Site Drainage and Assets e Walkover Observations posed Development and Vulnerability	10 11 11 11 12 13 14
4. PO	TENTIAL SITE FLOOD RISK	16
4.1 4.2 4.3 4.4 4.5	Sources of Flooding Fluvial Flooding (Surface Water) Groundwater Flooding Flooding from Sewers Flooding from Artificial Sources	16 16 17 17
5. FL	OOD RISK ASSESSMENT	19
5.1	SUMMARY	19
6. SU	RFACE WATER DRAINAGE STRATEGY	21
	EXISTING SITE DRAINAGE AND SURFACE WATER MANAGEMENT OVERVIEW AND CONCEPT SUSTAINABLE DRAINAGE SYSTEMS (SUDS) DS Objectives SUDS Management Train DRAINAGE STRATEGY CALCULATIONS DRAINAGE STRATEGY CALCULATIONS DRAINAGE NETWORK SURFACE WATER DRAINAGE DESIGN RESULTS CONSULTATION WITH LEAD LOCAL FLOOD AUTHORITY	21 22 22 22 23 25 26
7. CO	NCLUSIONS AND RECOMMENDATIONS	28
7.1 7.2 7.3	FLOOD RISK MANAGEMENT AND RESILIENCE MEASURES RESIDUAL RISK OFF SITE IMPACTS	

7.4	FURTHER WORK REQUIRED	28
APPEND	DIX 1 – AIRD GROUP TOPOGRAPHIC SURVEY (DRAWING NO. G/R/10	00) 1
	DIX 2 – SCOTTISH WATER SEWER PLANS (DOCUMENT REF –OP-ILH	
APPEND	DIX 3 – SITE WALKOVER PHOTOGRAPHS	3
APPEND	DIX 4 – SEPA FLOOD RISK ASSESSMENT CHECKLIST (SS-NFR-F-001)9
	DIX 5 – MICRODRAINAGE GREENFIELD RUNOFF RATE ESTIMATION _ATIONS (IH-124 & ICP-SUDS)	.10
	DIX 6 - MICRODRAINAGE SOURCE CONTROL SIMULATION FOR SUB CE ATTENUATION TANK SYSTEM	
APPEND	DIX 7 – CEC SURFACE WATER MANAGEMENT CHECKLIST	12
DRAWIN	NG 1 – 13582/001– CONCEPTUAL DRAINAGE STRATEGY – INDICATIN	/E13
DRAWIN	NG 2 – 13582/002– FLOW PATHS PRE-DEVELOPMENT	.14
DRAWIN	NG 3 – 13582/003– FLOW PATHS POST-DEVELOPMENT	15

Executive Summary

Ecus Limited (Ecus) was commissioned by **Contract Control** (the Client) in October 2019 to undertake a Flood Risk Assessment (FRA) and conceptual Drainage Strategy (DS), to assess the flood risks associated with the proposed development of a parcel of land located to the north of the village of Balerno, near Edinburgh (the Site). It is understood that the Client are seeking Planning Permission in Principle (PPiP) for the development of residential properties and associated infrastructure.

Flood Risk

This report has considered the flood risk to the proposed site from all potential sources, as required by Scottish Planning Policy 7 (2014) which sets out the guidelines for the prevention and alleviation of flood risk. The SEPA Flood Map indicates that the Site is not at risk of flooding in up to the 1 in 1,000 year annual probability flood event, which corresponds to a low likelihood of flood risk.

Due to the potential increase in surface water runoff volumes and discharge rates with the decrease in in site permeability associated with the development, additional mitigation measures have been proposed as part of the conceptual surface water drainage strategy, to ensure that the increased potential for pluvial flooding does not adversely impact the proposed development, or the surrounding area.

Based on assessment of available information on the potential flood risk sources, it is concluded that the site has low flood risk constraints, provided that suitable measures are taken to address surface water drainage. It is considered as appropriate to take forward for development, in accordance with the local development and national flood management guidance.

Surface Water Drainage Strategy

It is proposed that surface water runoff is discharged to an unnamed watercourse which is located along the eastern boundary of the Site. As the site is currently undeveloped, surface water runoff will be restricted to the existing Greenfield rate or 4.5 l/s/ha, the lower of the two.

It is possible for surface water to not exceed 4.5l/s/ha or the Qbar Greenfield run-off rate while being attenuated on site in up to the 1 in 200 year plus climate change annual probability event. Surface water can be attenuated in an above ground structure and a combination of SuDS features can be used to provide treatment to surface water flows before discharging into the unnamed watercourse.

It is recommended that further site investigations be undertaken in accordance with BRE365, to assess the potential use of infiltration techniques to discharge surface water to the ground, via infiltration, as this would potentially reduce attenuation requirements within the site and satisfy the SuDS hierarchy for discharge of surface waters.

1. Introduction

- 1.1.1 Ecus Limited (Ecus) was commissioned by **Exercise** (the Client) in October 2019 to undertake a Flood Risk Assessment (FRA) and conceptual Drainage Strategy (DS), to assess the flood risks associated with the proposed development of a parcel of land located to the north of the village of Balerno, near Edinburgh (the Site). It is understood that the Client are seeking Planning Permission in Principle (PPiP) for the development of residential properties and associated infrastructure.
- 1.1.2 The Site covers 34 hectares (ha) and is centred on Site Centroid National Grid Reference (NGR) NT 1576 6736. The area proposed for the development consists of undeveloped greenfield land, and is also characterised by a embanked disused railway running across the site, as well as gas main and electrical asset infrastructure being present across the north half of the Site.
- 1.1.3 The purpose of this FRA and DS is to:
 - Identify the possible hazards posed from all major sources of flooding (fluvial, surface water, groundwater, infrastructural and coastal sources);
 - Provide a qualitative assessment of the probability of each potential flood hazard representing a constraint on the proposed development, based on the proposed land use type for the development and likelihood of flood occurrence;
 - Investigate and define any potential drainage impacts associated with the Site;
 - Conceptually determine and define necessary surface water management controls to ensure no exacerbation of flood risk on site or to external receptors; and
 - Recommend appropriate and necessary mitigation measures and additional assessments that may be required to progress the sustainable development of the Site.
- 1.1.4 The FRA and DS comprises: a desk top review of publicly available information, including information from Scottish Environmental Protection Agency (SEPA), as the statutory regulator in relation to flooding, and The City of Edinburgh Council (CEC), as the local planning authority in the area for the proposed development; a site walkover and assessment of the site constraints, hydraulic controls and drainage elements evident on the Site
- 1.1.5 This FRA and DS report also details the methodologies employed within this study and recommendations as to any further work or investigation required to support the proposed development of the Site through the planning application process.

1.2 **Proposed Development**

- 1.2.1 The Site, is an irregularly shaped parcel of land, roughly rectangular, covering a total area of approximately 34 ha. The Site is bounded by an active railway to the north and undeveloped land to the west, with residential development to the south and east. Access is provided via Ravelrig Road which bisects the centre of the Site.
- 1.2.2 Current proposals for the Site are for residential development with associated hardstanding, landscaping and other associated infrastructure, including road, footpaths, etc.

1.3 Regulatory Policy and Legislation

1.3.1 This report has been prepared in accordance with the following national and regional policy guidance;

- Scottish Planning Policy (SPP) 7 (2014);
- Online advice on Flood Risk (2015) which superseded Policy Advice Note (PAN) 69;
- Technical Flood Risk Guidance for Stakeholders (2015);
- Delivering Sustainable Flood Risk Management Guidance (2011);
- Surface Water Management Planning Guidance (2013);
- The City of Edinburgh Council, Surface Water Management Plan (SWMP) Guidance (April 2017)
- The City of Edinburgh Council, Surface Flood Risk and Water Management Plan (FRWMP) Requirements (May 2017)
- Edinburgh Local Development Plan (LDP) (November 2016): and
- Edinburgh Design Guidance (October 2017)
- **1.3.2** Scottish Planning Policy 7 (2014) sets out the guidelines for the prevention and alleviation of flood risk. The main aim of this policy, in relation to flood risk management, is to prevent, avoid and reduce flood risk from all sources. The Flood Risk Framework detailed within SPP 7, categorises areas according to their annual probability of flooding. These categories determine the appropriate planning approach for new development, specifically:
 - Little or No Risk annual probability of coastal or watercourse flooding is less than 0.1% (1:1000 years)
 - No constraints.
 - Low to Medium Risk annual probability of coastal or watercourse flooding is between 0.1% and 0.5% (1:1000 to 1:200 years)
 - Suitable for most development. A flood risk assessment may be required at the upper end of the probability range (i.e. close to 0.5%), and for essential infrastructure and the most vulnerable uses. Water resistant materials and construction may be required.
 - Generally not suitable for civil infrastructure. Where civil infrastructure must be located in these areas or is being substantially extended, it should be designed to be capable of remaining operational and accessible during extreme flood events.
 - **Medium to High Risk** annual probability of coastal or watercourse flooding is greater than 0.5% (1:200 years)
 - May be suitable for:
 - residential, institutional, commercial and industrial development within built-up areas provided flood protection measures to the appropriate standard already exist and are maintained, are under construction, or are a planned measure in a current flood risk management plan;
 - essential infrastructure within built-up areas, designed and constructed to remain operational during floods and not impede water flow;
 - some recreational, sport, amenity and nature conservation uses, provided appropriate evacuation procedures are in place; and
 - job-related accommodation, e.g. for caretakers or operational staff.

- Generally not suitable for:
 - civil infrastructure and the most vulnerable uses;
 - additional development in undeveloped and sparsely developed areas, unless a location is essential for operational reasons, e.g. for navigation and water-based recreation, agriculture, transport or utilities infrastructure (which should be designed and constructed to be operational during floods and not impede water flow), and an alternative, lower risk location is not available; and
 - new caravan and camping sites.
- **1.3.3** Where built development is permitted, measures to protect against or manage flood risk will be required and any loss of flood storage capacity would have to be mitigated to achieve a neutral or better outcome.
- 1.3.4 Water-resistant materials and construction techniques should be used where appropriate. Elevated buildings on structures such as stilts are unlikely to be acceptable.
- 1.3.5 SEPA's indicative flood risk maps can be used as an initial indication of the likely level of risk. Where appropriate, further investigation should be carried out to better determine the true level of risk.
- 1.3.6 For surface water flooding, the flood risk framework recommends that:
 - Generally all infrastructure or buildings should be built free from surface water flooding during rainfall where the annual probability of flooding is higher than 0.5%, 1:200 years.
 - Drainage measures should result in a neutral or better outcome towards flood risk for not only the proposed Site but also outside of it with the consideration of the rainfall on the Site and run-off from adjacent areas.
- **1.3.7** While the Risk Framework provides guidance for determining high risk areas for flooding, it is also recommended that further consideration should also be given to:
 - the characteristics of the Site;
 - the use and design of the proposed development;
 - the size of the area likely to flood;
 - depth of water, likely flow rate and path, rate of rise and duration;
 - existing flood prevention measures extent, standard and maintenance regime;
 - an allowance for freeboard;
 - cumulative effects of development, especially the loss of flood storage capacity;
 - cross boundary effects and the need for consultation with adjacent authorities;
 - effects of a flood on access, including by emergency services;
 - effects of a flood on proposed open spaces including gardens; and
 - the extent to which the development, its materials and construction is designed to be water resistant.
- 1.3.8 Land raising, a possible flood protection measure, may be accepted in exceptional circumstances provided that it results in a neutral or better outcome for flood risk out with the elevated site. Compensatory storage should be provided where required.

- 1.3.9 In addition to the above, this report has also been informed by the following documents;
 - Fourth Estuary Local Plan District Water of Leith Catchment (potentially vulnerable Area) (August 2018) and;
 - City of Edinburgh Council, Water of Leith Management Plan (July 2020)
 - City of Edinburgh, SESplan Strategic Flood Risk Assessment (SFRA) (October 2016)

1.4 Scope of Flood Risk Assessment

- 1.4.1 The objective of this analysis and report is to provide a FRA in accordance with local and national guidance.
- 1.4.2 The detail and complexity of a FRA should reflect the level of risk to the Site and consider the appropriateness of the proposed development type. This should include assessment of potential risk to property and livelihoods, consideration of climate change and the definition of appropriate flood risk mitigations required to satisfy the planning process.
- 1.4.3 Policy Env 21 of the Edinburgh LDP (November 2016) states that the council will not grant planning permission unless it can be proven that development proposals don't have a negative impact on flood risk, including:
 - Increase flood risk or be at risk of flooding itself
 - Impede the flow of flood water or deprive a river system of flood water storage within the areas shown on the Proposals Map as areas of importance for flood management
 - Be prejudicial to existing or planned flood defence systems
- 1.4.4 It is noted that the development layout for the Site has not yet been finalised and as such an overarching assessment has been undertaken, identifying potential constraints and opportunities for the Site and any future development. However, ongoing design of integral site components and characteristics may further mitigate against any assessed flood risk and also allow for further mitigation of any flood risk/s determined as potentially affecting the Site. Significant changes to the Site's overall developable area may necessitate a further review of this document to ensure that risk of flooding is not exacerbated and has been satisfactorily addressed within the development proposal.
- 1.4.5 Specific elements of this assessment may require review and amendment prior to submission as part of an outline or detailed planning application.

1.5 Scope of Drainage Strategy

- 1.5.1 The Conceptual Drainage Strategy (DS) will utilise the hierarchy for disposal of surface waters generated as runoff from impermeable areas on the Site, so as to ensure that there is not a potential exacerbation of flood risk elsewhere, as a result of undertaking the development. This will be undertaken in accordance with widely accepted best practice principles detailed in industry guidance such as the C753 SUDS Manual (2016), Sewers for Adoption 7th Edition (2013) and applicable sections of the Planning Policy Guidance (PPG).
- 1.5.2 Given the proposed development has the potential to reduce the overall Site permeability, surface water runoff must be effectively managed to ensure that there is no exacerbation of potential surface water flooding issues on-site, or at any external receptors, due to the associated increases in surface water runoff rates and volumes.

- 1.5.3 Any increase in surface water runoff rate, associated with the development of the Site, must be managed in accordance with the guidelines set by CEC, the Lead Local Flood Authority (LLFA) for the area.
- 1.5.4 Policy Des 6 of the Edinburgh LDP (November 2016) states that the council will require development proposals to incorporate features that will reduce or minimise environmental resources use and impact, including:
 - Sustainable urban drainage measures that will ensure that there will be no increase in rate of surface water run-off in peak conditions or detrimental impact on the water environment. This should include green roofs on sites where measures on the ground are not practical.
- 1.5.5 Policy RS 6 of the Edinburgh LDP (November 2016) states that planning permission will not be granted where there is an inadequate water supply or sewerage available to meet the demands of the development and necessary improvements cannot be provided.
- 1.5.6 In Addition to the above, CEC's SWMP Guidance and FRWMP Requirements state the following for Greenfield Sites:
 - The drainage system must be designed to accommodate the 1 in 200 year rainfall event including a 30% uplift to account for climate change. Where the network cannot accommodate storage below ground level or within formal SuDS structures the developer must demonstrate that all flood waters can be retained within the site boundary. Flood areas within the site boundary must not prevent dry pedestrian egress from the property
 - A discharge rate from the proposed drainage system during the 200-year plus climate change event should not exceed 4.5l/s/ha or the 2-year greenfield rate, whichever is lower
- 1.5.7 Any increase in surface water runoff rates and volumes must be managed to ensure that there is no exacerbation of potential flooding issues on the Site, or at external receptors due to this increase.
- 1.5.8 This DS will aim to limit future discharge rates to the downstream outfall location to the Greenfield Qbar runoff rate, as calculated for the Site area.
- 1.5.9 The DS aims to provide surety that the proposed drainage can safely and appropriately convey all surface water from the Site, to appropriate discharge locations. This is to ensure sustainable and safe operation within the Site, as well as ensuring sustainable operation of any receiving infrastructure. These assessments have been undertaken in accordance with prescribed best practice and buildings codes, including prioritising the incorporation of sustainable drainage systems (SuDS), where appropriate and practicable for the management of surface water.

1.6 Consultation with Lead Local Flood Authority

1.6.1 The City of Edinburgh (CEC) Council is the Lead Local Flood Authority (LLFA) for the proposed development. As part of the design of the proposed drainage strategy outlined above, the LLFA was contacted to confirm requirements of the drainage strategy and proposed design concept.

2. Methodology

2.1 Introduction

- 2.1.1 This report aims to demonstrate that the proposed development is sustainable and will not be impacted by, or exacerbate flood risk, through development of the Site, taking the effects of climate change into account, as well as identifying further opportunities to reduce the probability and consequences of flooding.
- 2.1.2 As the permission sought is PPiP, this report will aim to identify constraints and opportunities for the Site and provide and indicative review of drainage and flood risk for the Site.
- 2.1.3 The assessment methodology is as follows:
 - Desktop review of the geology, hydrology and other pertinent environmental characteristics of the Site, and how these affect flood risk of the proposed development and site drainage.
 - Obtain and review existing baseline flood risk and drainage guidance information from relevant environmental authorities (SEPA, LLFA, etc.).
 - Review baseline conditions of flood risk to the Site from all potential sources and existing drainage conditions at the Site by means of a desk study.
 - Produce indicative design calculations for the proposed surface water drainage infrastructure to determine the viability of developing the Site and providing adequate storage in line with local planning policy and guidance.
 - Review the findings from the above and advise on the suitability of developing the Site and comment on limitations and opportunities for the Site as appropriate.

3. Development Description and Location

3.1 Site Location

3.1.1 The Site is referenced in Table 1 and Figure 1 below

Table 1: Site Referencing Information

Item	Brief Description				
Site address	land off Ravelrig Road, Balerno, Edinburgh, Scotland				
Council Area	City of Edinburgh Council				
Nearest Post Code	EH14 7DG				
Approximate OS Grid Reference	X: 315788, Y: 667273				
General Locality	The Site primarily comprises undeveloped arable farmland (Greenfield) and borders an active railway to the north and existing residential development to the south.				
-	The Site can be accessed via Ravelrig Road which passes through the Site from south to north.				

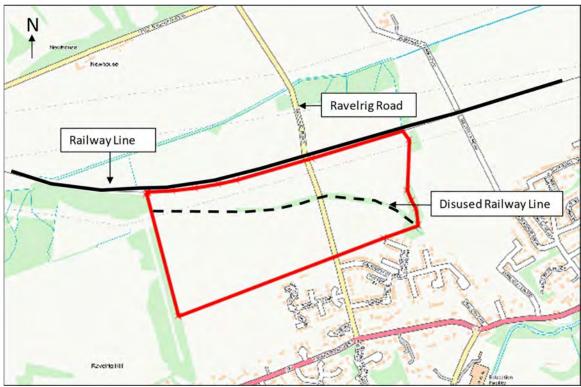


Figure 1: Site Location

3.2 Current Site Conditions

3.2.1 The Site is an irregularly shaped rectangular parcel of land, covering a total area of approximately 34 ha as defined by survey undertaken by ARID Group (Ref: G/R/1000). From, aerial imagery and a topographic survey of the Site, the Site consists of arable farmland with minimal tree coverage across the majority of the Site area. There are stands of trees located on the peripheries of the Site, with a hedge line of trees also evident across the Site, along the disused railway line which runs from the north west

corner of the Site to its eastern boundary.

Ground Cover and Topography

- 3.2.2 A topographic survey conducted by AIRD Group (Ref: G/R/1000), is presented as **Appendix 1** to this report.
- 3.2.3 Approximate Site levels are shown to be in the region of 183.5 m Above Ordnance Datum (AOD) with greatest elevations being located in southern most areas of the Site, to 119.8 m AOD with lowest elevations being located in the southern most areas of the Site. As well as being bisected by the Ravelrig Road, there is a disused railway line embankment which runs from thin a north west to south east orientation across the Site.
- 3.2.4 Levels in southern portion range between 183.5 to 140.6 m AOD with levels falling towards the crossing of the public highway and disused rail way from the western and eastern corners of the Site. Levels in the northern portion of the Site range between 149.0 to 120 m AOD with levels being greatest bordering the disused railway line. The Site gradient generally falls towards the north and north east with the lowest point being in the north east corner of the Site, directly adjacent to the unnamed watercourse which lies along the eastern boundary of the Site.

Geology

- 3.2.5 Information available on Soil Information for Scottish Soils (SIFSS) website (available: http://sifss.hutton.ac.uk/SSKIB_Stats.php, accessed 14/10/19) indicates that the Site is underlain by Macmerry consisting of brown forest soil with imperfect drainage.
- 3.2.6 British Geological Survey (BGS) Open Geoscience website (available: <u>http://mapapps.bgs.ac.uk/geologyofbritain/home.html</u> accessed 14/10/19) indicates that the Site is entirely underlain by Ballagan Formation Sandstone Bedrock Formation and superficial stratas of Devensian Glacial Till.
- 3.2.7 Available BGS website information from one public borehole record (Ref: NT16NE96) located approximately 220 m to the south east of the Site, indicates ground conditions to consist of sandy and gravely clays. Groundwater was not encountered

Hydrogeology

- 3.2.8 According to the Department for Environment, Food and Rural Affairs (DEFRA) Multi-Agency Geographical Information for the Countryside (MAGIC) map (Available: <u>https://magic.defra.gov.uk/MagicMap.aspx?startTopic</u>, accessed 14/10/19) indicates the Site is not located within a Groundwater Source Protection Zone (SPZ), as defined by SEPA for the protection of a potable groundwater supply.
- 3.2.9 Information available from SIFSS and BGS indicates that the Site is underlain by sandy and gravely clays with imperfect drainage. This type of soil is considered to have infiltration rate range of approximately 3 x 10⁻⁶ m/s and 3 x 10⁻⁸ m/s, as defined within Table 25.1 of the CIRIA C753 SuDS Manual V6.
- 3.2.10 The C753 SuDS Manual guidance states that infiltration viability should be given full consideration where rates of 10^{-6} m/s or greater exist on Site. As the desktop information for the suggests that the potential infiltration rate of the Site is lower than 1×10^{-6} m/s, the discharge of surface water runoff via infiltration to the ground will not be further considered as the primary control or discharge mechanism for management of surface water runoff within the development. The main design concept will therefore focus on providing a suitable alternative which provides a contingency in the event that

infiltration tests undertaken on the Site further provide infiltration unviable. This DS concept will therefore largely focus on the attenuation of surface water runoff within the Site, with outfall discharge to a suitable location, of either a watercourse or surface water drainage sewer

3.2.11 Although a desk top assessment of infiltration for the Site indicates that it may prove unviable, it is recommended that site-specific infiltration testing is undertaken within the Site, in accordance with BRE 365 guidance, so as to confirm or preclude the use of infiltration as a potential means of discharging surface water from the proposed development. If favourable infiltration conditions are observed within the Site area, this may result in a reduction of volume required to attenuate surface water runoff rates and volumes within the development. Infiltration testing should be completed prior to, or during, the detailed design stage of the development.

Hydrology

- 3.2.12 The Water of Leith is located approximately 430 m south of the Site and is classified as main river, originating from the Harperrig Reservoir, flowing in an easterly direction.
- 3.2.13 The Murray Burn is located approximately 220 m north of the Site and is classified as an ordinary watercourse. The Murray Burn flows in an easterly direction before out falling into the Water of Leith.
- 3.2.14 An unnamed watercourse is located along the eastern boundary of the Site and is classified as an ordinary watercourse. The drain flows in a northerly direction where if passes beneath the Edinburgh Glasgow railway line before out falling into the Murray Burn at a confluence approximately 245 m to the north of the Site. A site visit found the watercourse to pass beneath the railway via a box culvert of unknown dimensions. Further consultation with Network Rail may be required so as to confirm the appropriateness of discharging attenuated flows from the Site through this culvert.
- 3.2.15 An assortment of other land drains and field ditch networks are located in the arable farm land to the north and west of the Site, all ultimately draining the watershed catchment to the common outfall of the Murray Burn.
- 3.2.16 The Standard Annual Average Rainfall (SAAR) value of **791 mm**, as obtained from the UKSUDS.com website's greenfield runoff rate calculation tool, is 4.6% higher than the observed average rainfall measured at the nearest meteorological station of Edinburgh Gogarbank, located approximately 6.4 km north of the site, which is recorded as being 754 mm on average between 1981-2010 (Available from: <u>https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-climate-averages/gcqrqyr80</u>, accessed 14/10/19).
- 3.2.17 The SPR (Standard Potential for Runoff) value of **0.47** signifies that the percentage of rainfall contributing to runoff for Greenfield sites is moderate, with approximately 47% of rainfall running off land as surface water in undeveloped, Greenfield conditions.
- 3.2.18 The average monthly rainfall observations recorded at Gogarbank station, located approximately 6.6 km to the north east of the Site, have been summarised in **Table 2**. The observations at Gogarbank station indicate that the autumnal and winter months experience the most rainfall.

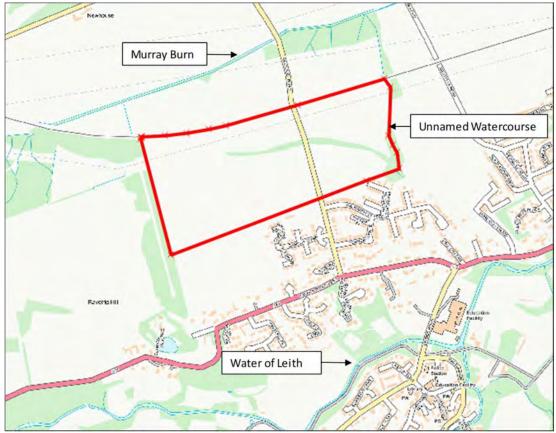


Figure 2: Watercourse Locations

 Table 2: Gogarbank Average Monthly Rainfall (source: Met Office, Edinburgh Gogarbank Station)

<u>Month</u>	<u>Rainfall</u> (mm)
Jan	76.3
Feb	53.8
Mar	55.9
Apr	46.1
May	49
Jun	61.5
Jul	64.1
Aug	67.8
Sep	58
Oct	84.5
Nov	73.7
Dec	63.6
Total	754.2

Existing Site Drainage and Assets

3.2.19 The Site is currently undeveloped and has no known surface water drainage infrastructure, as confirmed during a site visit undertaken on 25 October 2019. Given the observed topographic conditions on Site it is reasonable to assume that the Site

watershed area drains to the north where it enters an unnamed watercourse along the eastern boundary of the Site or is similarly intercepted and conveyed along trackside railway drainage before discharging into and passing beneath the railway line through a culvert and further flowing north into the Murray Burn. The current drainage regime as based on review of the Site's existing topography, has been further illustrated on Ecus Drawing 2 - 13582/002.

- 3.2.20 The Site is located in an area covered by Scottish Water (SW) as the statutory undertaker for sewerage and water assets. Sewer records obtained from SW, provided as **Appendix 2** to this report, illustrate a combined sewer located approximately 40 m south at the junction of Ravelrig Road and Dalmahoy Crescent (Manhole ID 9102). The entirety of the Site is not shown to be served by any existing SW surface water or foul water drainage infrastructure.
- 3.2.21 An intermediate pressure Gas mains runs through the Site, the location of which is indicated on **Drawing 1** (Ref: 13852/001). A linesearch undertaken on 4 October indicates that no other gas main infrastructure runs through the Site. Asset location information as obtained within this Linesearch has also been provided within **Appendix 2** of this report.

Site Walkover Observations

- 3.2.22 Site walkovers were conducted by Ecus on 25 October 2019 and subsequently 7 November 2019. The photographic recordings of observations made within this site walkover have been presented as **Appendix 3** to this report.
- 3.2.23 The existing access to the Site is provided via Ravelrig Road with which dissects the Site through the centre (photo 1 and 2).
- 3.2.24 The unnamed watercourse runs along the eastern boundary of the Site and flows in a northerly direction (see photo 3, 4 and 5).
- 3.2.25 An inflow into the unnamed watercourse is located along the upper stretch of the watercourse within the Site boundary and is assumed to convey surface water flows from the housing estates to the south (Photo 3).
- 3.2.26 Once the unnamed watercourse reaches the northern boundary of the Site it passes beneath the Edinburgh Glasgow railway line via a box culvert (photo 6).
- 3.2.27 The northern boundary of the Site is the Edinburgh Glasgow railway line. A land drain runs adjacent to the railway line which conveys flows from the western portion of the Site into the unnamed watercourse (Photo 7).
- 3.2.28 The remaining area of the Site currently consists of agricultural land, which was observed during the walkover survey to have a gently topographic slope from north west to the south east (Photo 8 and 9).

Proposed Development and Vulnerability

- 3.2.29 The current planning proposal is for residential development of the land with associated hardstanding and landscaping.
- 3.2.30 As the masterplan is outline at this stage, and noting the restriction on developable area due to the existing infrastructure and service constraints on the Site, it has been assumed that the developable area of the Site is restricted to land to the south of the

Intermediate Pressure Gas main, which constitutes an area of approximately 22.13 ha (**Drawing 1**) which is approximately 65% of the total Site area.

3.2.31 As defined by Scottish Planning Policy 7 sites not deemed to be at risk of fluvial flooding (outside of 1 in 1,000 year annual probability event) have no constraints in respects to development type.

4. Potential Site Flood Risk

4.1 Sources of Flooding

4.1.1 The report is to consider flood risk from all potential sources. The following section identifies flood risk receptors and potential flood risk sources. Section 5 then discusses in further detail the probability of flooding, any potential impacts and necessary mitigation, where required. A data request has been sent to SEPA for the provision of any flood risk assessment material or maps which may pertain to the Site, however at the time of writing this report, no response has been received.

4.1 Fluvial Flooding

- 4.1.1 Water of Leith lies approximately 430 m south of the Site. SEPAs Flood Map demonstrates that the Site is at little or no risk of fluvial flooding from Water of Leith and lies outside the 1 in 1,000 year annual probability flood event.
- 4.1.2 Murray Brook is located approximately 220 m north of the Site. SEPAs Flood Map does not define flood risk from Murray Brook for stretch located to the north of the Site. In the absence of a flood extent, the surface water flood map can be used as a proxy to define flood risk from this source and determine conveyance routes should a flood occur. This shows flooding to be retained to low-lying land immediately adjacent to the Brook.
- 4.1.3 In addition to the above, site levels along Murray Brook in the vicinity of the Site are expected to be in the vicinity of 115.0 m AOD, while minimum Site levels are noted as being 119.8m AOD. Additionally, minimum levels within the proposed developable area of the Site are shown to be in the order of 131.0 m AOD, with an assessed difference in levels of 16.0 m meaning it is considered to have negligible risk from fluvial flood waters from this source.
- 4.1.4 There is an unnamed watercourse located along the eastern boundary of the Site. SEPAs Flood Map does not define flood risk from the unnamed watercourse and flood risk from the source has therefore not been quantified. In the absence of a flood extent, the surface water flood map will be used as a proxy to define flood risk from this source and determine conveyance routes should a flood occur. This shows that any flooding would be expected to be either confined to the watercourse channel or restricted to land immediately adjacent to the watercourse.
- 4.1.5 A review of surrounding levels suggests the contributing watershed catchment for the watercourse would be limited to the land in the immediate vicinity of the watercourse and therefore is not expected to convey significant flows. This is confirmed by the FEH Web Service which fails to pick up a catchment for the unnamed watercourse and as such confirms its limited size as a minor local tributary to the Murray Brook.

4.2 Pluvial Flooding (Surface Water)

- 4.2.1 SEPAs surface water flood map (Error! Reference source not found.) shows that the majority of the Site is indicated to be at very low risk to pluvial flooding (<0.1% chance of flooding in a given year). While some areas are shown to experience low to high risk of surface water flooding.
- 4.2.2 Based on a review of the Site topography and available pluvial flood mapping as provide by the SEPAs Flood Map, it can be seen that areas at risk are a result of water being conveyed down Ravelrig Road or water pooling behind the disused railway line,

due to insufficient drainage. Flows down Ravelrig Road would not be expected to inundate the Site, noting a raised embankment either side of the highway as observed within the Site walkover.

- 4.2.3 The proposed levels for the development have not been provided, therefore any potential development within the Site must be considerate of the fact that runoff waters naturally collect in these locations due to the current topographic conditions.
- 4.2.4 As the proposed development of the Site may potentially reduce the overall site permeability and potentially increase surface water runoff rates and volumes, the surface water discharge controls must ensure that any proposal for drainage, or discharge, does not adversely impact upon downstream drainage infrastructure or offsite receptors.

4.3 Groundwater Flooding

- 4.3.1 SEPAs flood map indicates that the Site is not susceptible to groundwater flooding; however, noting that underlying bedrock geology of the Site consists of siltstone, there may be some susceptibility to groundwater flooding.
- 4.3.2 Noting the gradient at the Site, any groundwater would be conveyed off site before building to any significant depth.
- 4.3.3 Further to this, the potential for groundwater emergence causing flooding within the Site post-development, will be inhibited due to potential pathways for groundwater flooding being largely removed through placement of construction fill material and hardstanding surfaces. Flood risk to the proposed development due to groundwater emergence is therefore considered to be low to negligible provided that all reasonable and practicable mitigation measures for any subsurface construction associated with the development are adhered to.

4.4 Flooding from Sewers

- 4.4.1 Sewer flooding can occur when the capacity of the infrastructure is exceeded by excessive flows, or as a result of a reduction in capacity due to collapse or blockage, or if the downstream system becomes surcharged. This can lead to sewers flooding onto the surrounding ground via manholes and gullies, which can generate overland flows. SW sewer asset plans were obtained (**Appendix 2** of this report).
- 4.4.2 SW have been contacted to ascertain whether they hold any records of historic sewer flooding in the vicinity of the Site however, at the time of writing this report, no response has been received.

4.5 Flooding from Artificial Sources

- 4.5.1 The Threipmuir and Harlaw Reservoirs are located approximately 3.3 km and 2.7 km south and south east of the Site respectively. The Harperrig Reservoir is located approximately 8.20 km south west of the Site.
- 4.5.2 SEPAs Reservoir Inundation Map shows the majority of the Site to remain flood free in the event of a damn failure with only a small portion along the eastern boundary and within the north eastern corner shown as being potentially at risk of inundation. Flood waters are shown to generally adopt the route of the unnamed watercourse down to the Murray Burn.

4.5.3 While a small portion of the Site is shown to be at risk of flooding from artificial sources, reservoirs are regularly maintained and therefore the potential risk of flooding from reservoir failure is considered to be negligible.

5. Flood Risk Assessment

5.1 Summary

- 5.1.1 The SEPA Flood Map indicates that the Site is not at risk of flooding in the up to 1 in 1,000 year annual probability flood event, which corresponds to a low likelihood of flood risk. The flood map indicates that the majority of the Site is not susceptible to surface water flooding, with small localised areas experiencing pooling due to topographic features and insufficient drainage adjacent to the railway line in the north of the Site. These areas are proposed to be well removed from any developable area within the Site, as detailed in previous sections of this report. The flood map extents indicated on this map show the potential for flooding from fluvial and coastal sources, and although they are indicative, they are a key tool in defining the appropriateness of a development type or the requirement for further assessment.
- 5.1.2 As the development is located in an area of low likelihood of flood risk from fluvial flooding, the Site is deemed to be suitable for residential development.
- 5.1.3 While a portion of the Site is shown to be at risk of flooding from artificial sources, given that this is restricted to a small area along the eastern boundary, any proposed residential development can be located outside the area of inundation.
- 5.1.4 Section 5 has provided a comprehensive review of information on potential flood risks to the Site from all applicable sources. Table 4 considers each of the sources and defines the probability of flood risk associated with each of the likely impacts.

Source	Probability of Flood Risk	Impacts	Remarks / Mitigation Measure
Tidal	N/A	NA	Site located inland and not tidally influenced.
Fluvial	uvial Very low / Negligible		Site is located entirely within Flood Zone 1. Review of SFRA reveals no historical evidence fluvial flooding at the Site location. Review of topography shows the developable area to be substantially higher than levels adjacent to the Murray burn and Water of Leith.
Surface	Low	Low	Review of information from multiple sources reveals evidence of surface water flooding potentially affecting small portions of the Site in the current topographic low spots adjacent to the unnamed watercourse in the east or due to backing up behind the disused railway embankment along the Sites northern boundary
			The proposed development will require the surface water drainage design to ensure surface water runoff flow rates and volumes from the Site are reduced accordingly, managed internally and that any surface waters accumulated in this area are not displaced to external areas.
Sewers	Low	Low / Negligible	The risk of flooding from the surcharging of sewers is considered to be low.

Table 3: Flood Risk Summary

Source	Probability of Flood Risk	Impacts	Remarks / Mitigation Measure
Groundwater	Low	Low / Negligible	Groundwater flood risk is considered to be low.
Artificial Sources	Negligible	low	While artificial sources are located upstream of the Site and portions of the Site are shown to be at risk these can be left undeveloped. Irrespective these structures are maintained regularly and the chance failure of such structures is negligible.

- 5.1.5 Based on the assessable information presented, the Site is considered as appropriate for development, given the assessed flood risk posed from all sources, the means of adopting suitable mitigation measures to prevent increase in the potential for flood risk and based on the vulnerability of the development type. Further consideration of necessary surface water runoff mitigation measures will be provided, so as to address the potential for increase of surface water arising from the proposed development of the Site.
- 5.1.6 Taking the findings from the above the SEPA Flood Risk Assessment Checklist (SS-NFR-F-001) has been completed and provided within **Appendix 4**

6. Surface Water Drainage Strategy

6.1 Existing Site Drainage and Surface Water Management

6.1.1 The Site consists of undeveloped Greenfield land and as indicated in **Section 3.2** the Site is not currently served by any existing SW drainage infrastructure and surface water runoff is assumed to be positively drained to the Murray Brook, via the unnamed watercourse and other informal routes across the Edinburgh - Glasgow railway.

6.2 **Overview and Concept**

- 6.2.1 As detailed in **Section 3.2**, based on the outline nature of the proposals a developable area of 22.13 ha has been taken (**Drawing 1**).
- 6.2.2 The above area is considered to be a conservative estimate of the developable area of the Site noting the presence of the Intermediate Pressure Gas main and High Voltage Power Line being located in the northern portion of the Site. As such, any storage requirements resulting from the above area should represent the most conservative requirements for storage on the Site and should ensure any future proposals of similar or lesser extent can satisfy the requirements for progressing development, based on adoption of control and mitigation measures as identified within this conceptual DS.
- 6.2.3 Ravelrig Road has been excluded from the development area as this will be assumed to continue to drain to existing conditions post development. It is considered that this road is currently served by existing highways drainage infrastructure.
- 6.2.4 Taking a developable area of 22.13 ha, it has subsequently been assumed that 70% of this area will be impermeable to support the proposed development of the Site, in order to provide a conservative estimate of the drainage and attenuation requirements.
- 6.2.5 Once exact developable areas are know this drainage strategy will require revision to reflect the most current proposed development layout, to ensure that it accommodates any associated changes in Site permeability and surface water loads generated.
- 6.2.6 Noting the above the following points have been used to further develop this surface water drainage strategy for accompanying the proposed development and these components described below:
 - As per the applicable hierarchy for disposal of surface water, infiltration is the preferred method of discharging surface water runoff from a developed site. This may not be suitable for the proposed development given potentially poor soil infiltration potential and infiltration has therefore been precluded from further assessment for the Site's surface water drainage strategy. Further assessment for the suitability of infiltration can be determined via infiltration / soakaway testing conducted in accordance with BRE 365. This should be explored prior to, or during, the detailed design phase so as to either confirm or deny the suitability of soakaways within the proposed development.
 - Following the hierarchy for disposal of surface water, it is proposed that the surface water generated within the proposed development will be discharged to the unnamed watercourse running along the eastern boundary of the Site.
 - The 70% impermeable area is assumed to encompass all impermeable areas within a proposed housing development, including roadways, driveways, building footprints and any other associated hardstanding areas.

- While a network is not being designed at this stage an indicative location for the main components will be identified to show how flows will conveyed across the Site post development. It is assumed that this will incorporate a combination of drainage ditches, swales and filter tranches which will treat surface water flows as they're conveyed across the Site to a basin located in the north east corner of the Site, before out falling into the unnamed watercourse in accordance with the drainage hierarchy.
- As required by CEC FRWMP Requirements, the cumulative discharge of surface water to the unnamed watercourse will not exceed 4.5l/s/ha or the 2year (Qbar) Greenfield run-off rate, with the lower of the calculated discharge rates to be applied for Site attenuation requirements. All flows from the surface runoff water attenuation control will be controlled through a flow vortex device, such as a hydro-brake. These outlets will also be fitted with emergency stopcocks so as to ensure that discharge from the Site from the surface water drainage network may be effectively shut off in the case of an emergency.
- The unnamed watercourse is culverted just north of the Site as it passes beneath the Edinburgh - Glasgow railway line. While discharge rates will be restricted in accordance with local planning policy and guidance, a developer enquiry should be submitted to Network rail in order to determine any additional requirements they may have prior to or during the detailed design stage.
- As recommended within local planning policy and guidance, a 30% increase will be applied to the critical 1 in 200 year rainfall events for the assessment of the Site's internal surface water drainage requirements. The Site surface water drainage strategy will need to accommodate all rainfall events up to and including the critical 1 in 200 year plus (30%) climate change rainfall event, so as to prevent unnecessary flooding within the Site, and reduce the potential for unrestricted discharge to the receiving environments potentially causing flooding in areas off the Site.
- As required by CEC flows paths post development should not be detrimental to adjacent land and should not increase flood risk elsewhere.

6.3 Sustainable Drainage Systems (SuDS)

SuDS Objectives

6.3.1 The Site conceptual surface water drainage strategy is to be reflective of Sustainable Drainage Systems (SuDS) principles. At a particular site these systems are designed to manage both the environmental risks (e.g. pollutant entrainment) resulting from the urban runoff and to contribute, wherever possible, to environmental enhancement. The integration of additional SuDS and surface water quality improvement treatments on the Site should be further considered for incorporation within the wider drainage strategy during the detailed design phase.

The SuDS Management Train

6.3.2 A 'Management Train Approach' should be central to the surface water drainage strategy of the Site. The main objective is treatment and control of runoff as near to source as possible, thus protecting downstream habitats and further enhancing the amenity value of the Site. This concept uses a hierarchy of drainage techniques to incrementally reduce pollution, flow rates and volumes of storm water discharge from the Site, and is as follows:

- Prevention The use of good site design and housekeeping measures to prevent runoff and pollution including rainwater reuse.
- Source controls Control of runoff at source or as close to source as possible (e.g. soakaway, permeable pavements).
- Site control Management of water in a local area and can include below ground storage/attenuation, detention basins, large infiltration devices.
- Regional control Management of water from a site or various sites and can include wetlands and balancing ponds.
- 6.3.3 The drainage techniques for this development will seek to include, where possible, prevention, source control and site control measures.

6.4 Drainage Strategy Calculations

- 6.4.1 Preliminary design calculations have been completed to demonstrate that online storage may be provided within the development footprint to allow a controlled flow rate not exceeding 4.5l/s/ha or the 2-year (Q2) Greenfield rate. These calculations for determination of the maximum applicable discharge rate were carried out using the Greenfield Runoff Rate Estimation tool in Microdrainage, and are further summarised in Table 5. The full Microdrainage output of these calculations is provided as **Appendix 5** to this report.
- 6.4.2 The existing discharge calculation input parameters are as follows:
 - Total developable area (approx.) = 22.13 ha
 - Site area < 50 ha, therefore the use of Flood Studies Report (FSR) interim Code of Practise for SuDS (ICP-SUDS) model has been adopted for calculation of Greenfield runoff rates. This has also been based on a comparison of applicable Greenfield runoff rates, with the more conservative ICP-SUDS results being adopted for the Site DS proposal.
 - Impermeable area (or degree of urbanisation for Greenfield calculation) = assumed no current urbanisation of site = 0% (no urbanisation)
 - Hydrologic region = 2
 - Soil = 0.47
 - SAAR = 895 (greater of the UKSUDs and Microdrainage values so as to provide a more conservative estimate of storage requirements)

Table 4: Greenfield Discharge Rate Comparison (IH 124 vs ICP-SUDS)

		Greenfield Discharge Rate (L/s)				
		IH 124	ICP-SUDS			
	Area (ha)	22.13	22.13			
turn riod s	Q1	135.5	123.9			
Returr Perioc s	Qbar	155.8	142.4			

Q30	295.5	270.2
Q100	409.7	374.6

- 6.4.3 The calculated peak greenfield discharge rate for all events up to and including the peak 1 in 200 year + 30% climate change event is therefore:
 - Qbar 142.4 (L/s)
- 6.4.4 As stipulated by CEC the discharge rate from the proposed drainage system during the 200-year plus climate change event should not exceed 4.5l/s/ha or the 2-year (Qbar) Greenfield rate, whichever is lower. Taking a developable area of 22.13 ha the Site discharge rate should not exceed 142.4 L/s or 99.6 L/s, whichever is the lower.
- 6.4.5 Based on this, the Site discharge rate will therefore be restricted to 99.6 L/s.
- 6.4.6 The discharge rate calculations for the existing Site conditions have been provided so as to undertake further analysis of the requirements for attenuation of the increase in impermeable area required for housing, berths, roads and other associated development.
- 6.4.7 Based on outline nature of the plans and the assumption that 70% of the developable area (22.13 ha) will be impermeable a total contributing impermeable area has been calculated as:
 - 15.49 ha
- 6.4.8 The design conditions of the attenuation system, will be as follows:
 - All discharge for events up to and including the 1 in 200 year + 30% rainfall events, cumulative discharge will be limited to 99.58 L/s.
 - All surface water runoff for events up to and including the 1 in 30 year plus 30% return period events will be managed with no flooding of any internal drainage network (to be assessed within the further detailed design phase).
 - All surface water runoff for events up to and including the 1 in 200 year plus 30% will be managed within the Site, with any surface storage to be confined within the proposed road network or other appropriate secondary storage areas, with no flooding of pedestrian access and no external flooding from the Site or control structures.
 - Site open space and landscaped areas will not produce runoff or drain to the surface water management infrastructure proposed as part of this strategy and are taken into account noting that only 70% of the developable area has been assumed to be impermeable.
 - Minimum cover requirements for the attenuation system or drainage network will be to Sewers for Adoption 7th Edition standards for HGV access (1.20m minimum cover), when located in an area to be trafficked.
 - The side slope of the attenuation basin should not exceed 1:6 as to allow for safe grass cutting and maintenance.
 - Invert level of the attenuation system is currently designed at this outline design stage as 121.5m AOD, based on providing a 1.30 m deep structure. This invert level is based on the average level in the north east corner of the Site, as

observed from the topographic survey (**Appendix 1**). Invert level subject to change following the confirmation of proposed Site levels as defined during the detailed design phase and confirmation of respective outfall location levels.

- 6.4.9 For the future detailed design of Site drainage requirements, a hydraulic model or analysis of pipe and ditch network sizing and flow requirements would be undertaken using drainage design software subsequent to the design of finished Site levels. It is noted that the volumes provided as part of this conceptual DS assessment are preliminary and may potentially be reduced at a detailed design stage, when more site-specific information is made available, including the potential for use of infiltration as a means of discharging a portion or potentially all surface water runoff generated on the.
- 6.4.10 On-site infiltration tests will ultimately determine how surface water runoff is managed and may reduce the required attenuation volume. This conceptual calculation and drainage strategy demonstrates an alternative to infiltration is possible for this development. The proposed drainage network will be designed in accordance with Sewers for Adoption 7th Edition (SfA). SuDS guidance will be taken from CIRIA C753 (the SuDS Manual) 6th edition.
- 6.4.11 It is a requirement of CEC guidance that the drainage systems be designed to not flood any part of the Site in a 1 in 30-year +CC return period design storm (3.33% annual probability of occurrence). The design may require that some areas of the hardstanding areas experience minor flooding in extreme conditions (those in excess of 1 in 30 year events). This is classed as Exceedance flooding or Secondary Storage.
- 6.4.12 Any such water will be directed away from residential units, where it will discharge into the drainage infrastructure as water levels recede. All exceedance flood water will be retained and managed on-site up to the 200-year plus climate change return period to prevent flood impact to the adjoining neighbours or exacerbating flood impacts on downstream receiving infrastructure. All drainage designs will include the appropriate climate change allowance, in this case a 30% increase in rainfall.
- 6.4.13 The attenuation basin system has been optimised to minimise the potential need for secondary storage for flood water during the peak 1 in 200 year + 30% climate change rainfall event. The required basin size and indicative proposed location is indicated on **Drawing 1**.

6.5 Drainage Network

- 6.5.1 In the absence of a Site plan an indicative drainage network has been provided showing how flows would be intercepted and conveyed to the attenuation basin. This includes the main line while branch networks conveying flows to this would need to further assessed at the detailed design stage.
- 6.5.2 The final surface water drainage network servicing the Site should ideally consist of permeable paving to limit the runoff from any paved areas and subsequent flows should be conveyed across the Site via a combination of drainage ditches, swales and filter trenches in order to provide treatment to any surface water flows before they reach the attenuation basin. This will manage post development conveyance routes and ensure any additional flows are captured before they leave the Site and therefore should not impact flood risk elsewhere (**Drawing 3**). Once the detailed design has been developed, it should ensure that any flow routes do not conflict with the location of dwellings or other key infrastructure.
- 6.5.3 For any portion of network crossing a highway a minimum cover requirement of 1.20 m

must be provided for the internal drainage network to satisfy Sewers for Adoption standards. Further assessment of the proposed internal drainage network levels and the proposed outfall connection points must be undertaken with reference to the proposed finished Site levels, so as to ensure that discharge via gravity may be provided. This should be undertaken during the detailed design stage.

6.5.4 Additional pollutant control measures, such as for the control of silt entrained within surface water runoff, will be provided through the use of silt-trap gullies, channels with silt traps, first flush mechanisms on water, "French drains" with silt traps or other similar filtration technique.

6.6 Surface Water Drainage Design Results

- 6.6.1 Simulations were conducted for all rainfall events for the 1 in 200 year + 30% climate change return periods using the Source Control Module of Microdrainage. From these simulations it was observed that all runoff may be managed on Site for all events up to and including the critical 1 in 200 year + 30% climate change event , in accordance with the recommended best practise guidance and design criteria, as established in previous sections.
- 6.6.2 The simulation conducted for the attenuation basin for the 1 in 30 year + 30% climate change return periods indicates that discharge for the peak rainfall event can be maintained below the rate of 99.6 L/s. The maximum discharge rate returned was calculated as 99.6 L/s, for the 1 in 30 +30% climate change year-960 min winter event, with no flooding, requiring a maximum storage volume of 5991.2 m³.
- 6.6.3 The discharge for the peak rainfall event for the 1 in 200 year + 30% climate change return periods can be maintained below the rate of 96.84 L/s. The maximum discharge rate returned was calculated as 99.6 L/s, for the peak 1 in 200 year + 30% climate change-1440 min winter event, requiring a total storage volume of 9451.4 m³.
- 6.6.4 The above volume could be attenuated in a attenuation basin located in the available attenuation area, noting a total available area of 25,459 m² (**Drawing 1**), with the characteristics listed below:
 - Max. Discharge = 99.6 L/s for all events up to and including the 1 in 200 year +30 % climate change return period.
 - Cover level of attenuation basin = 121.5 m AOD
 - Top Area of attenuation basin = 8,510 m²
 - Base Area of attenuation basin = 6,150 m²
 - Internal depth of attenuation basin= 1.30 m
 - Gradient of Internal Side Slope: 1:6
 - Invert level of attenuation basin = 120.2 m AOD
- 6.6.5 Microdrainage results outlining the above have been provided in **Appendix 6**.
- 6.6.6 Taking the findings from the above, the CEC Surface Water Management Checklist has been completed and provided within **Appendix 7**.

6.7 Consultation with Lead Local Flood Authority

- 6.7.1 CEC is the Lead Local Flood Authority (LLFA) for the proposed development. As part of the design of the outline DS detailed above, the LLFA was contacted to confirm requirements of the drainage strategy and proposed design concept.
- 6.7.2 CEC was contacted on 5 October 2019 regarding the outline for the proposed drainage strategy for the development. As of writing this report, no response has been received from the council.

7. Conclusions and Recommendations

7.1 Flood Risk Management and Resilience Measures

- 7.1.1 Based on assessment of the available information regarding potential sources of flood risk, it is concluded that the Site has low flood risk constraints from all sources, provided suitable measures are taken to address surface water management within the Site. It is considered appropriate to take forward for development, in accordance with local development and national flood management guidance and the national planning policy framework. Based on assessment of all potential flood sources, and the applicable vulnerability for the proposed development, the Site is considered as appropriate for applying for further planning approval.
- 7.1.2 Due to the potential increase in surface water runoff volumes and discharge rates in line with the overall decrease in site permeability, due to development, additional design considerations and mitigation measure have been proposed as part of the Site concept surface water drainage strategy, to ensure that the flooding from pluvial sources does not impact adversely on the proposed development.

7.2 Residual Risk

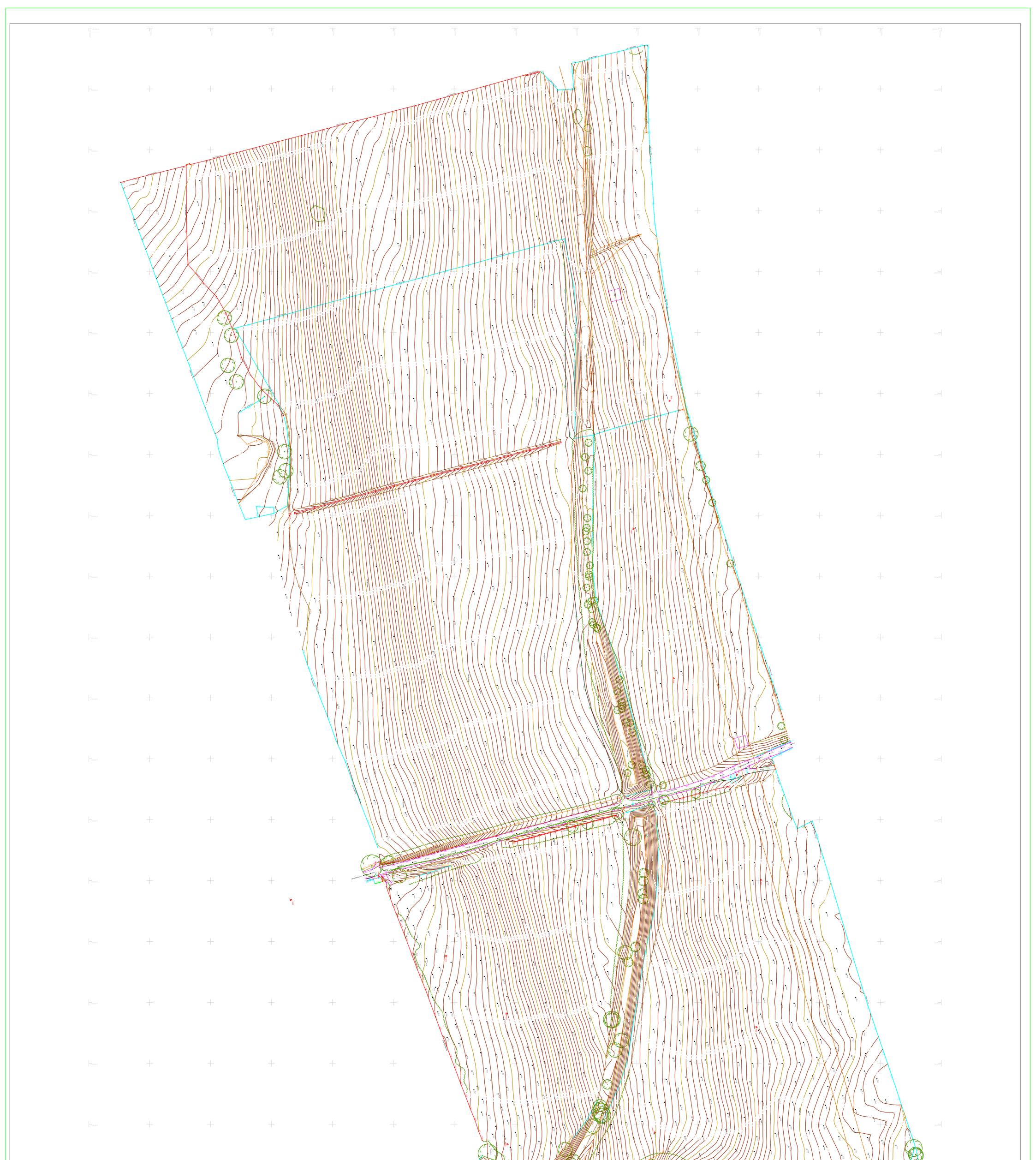
- 7.2.1 Flood risk to people and property can be managed but it can never be completely removed; as residual risk remains after flood management or mitigation measures have been put in place in the event that there are flood levels, extents and flows in excess of those hereby quantified and assessed.
- 7.2.2 As previously indicated, the current analysis has returned results indicating that all surface water runoff arising from rainfall events up to and including the peak 1 in 200 year + 30% climate change rainfall event can be safely and satisfactorily managed on with no flooding, provided the design considerations and criteria provided within this conceptual drainage strategy design are followed and adopted.

7.3 Off Site Impacts

- 7.3.1 The report has concluded that the risk of flooding to the proposed development layout is acceptable. By including SuDS into the drainage system, this will reduce the potential for surface water flooding impact onto the downstream catchments.
- 7.3.2 As there is no displacement of flood water or increased rate of runoff into the adjacent properties as part of this proposal, this is consistent with the evaluation that there is minimal risk of potential surface water flooding arising from the development and impacting upon the downstream catchments

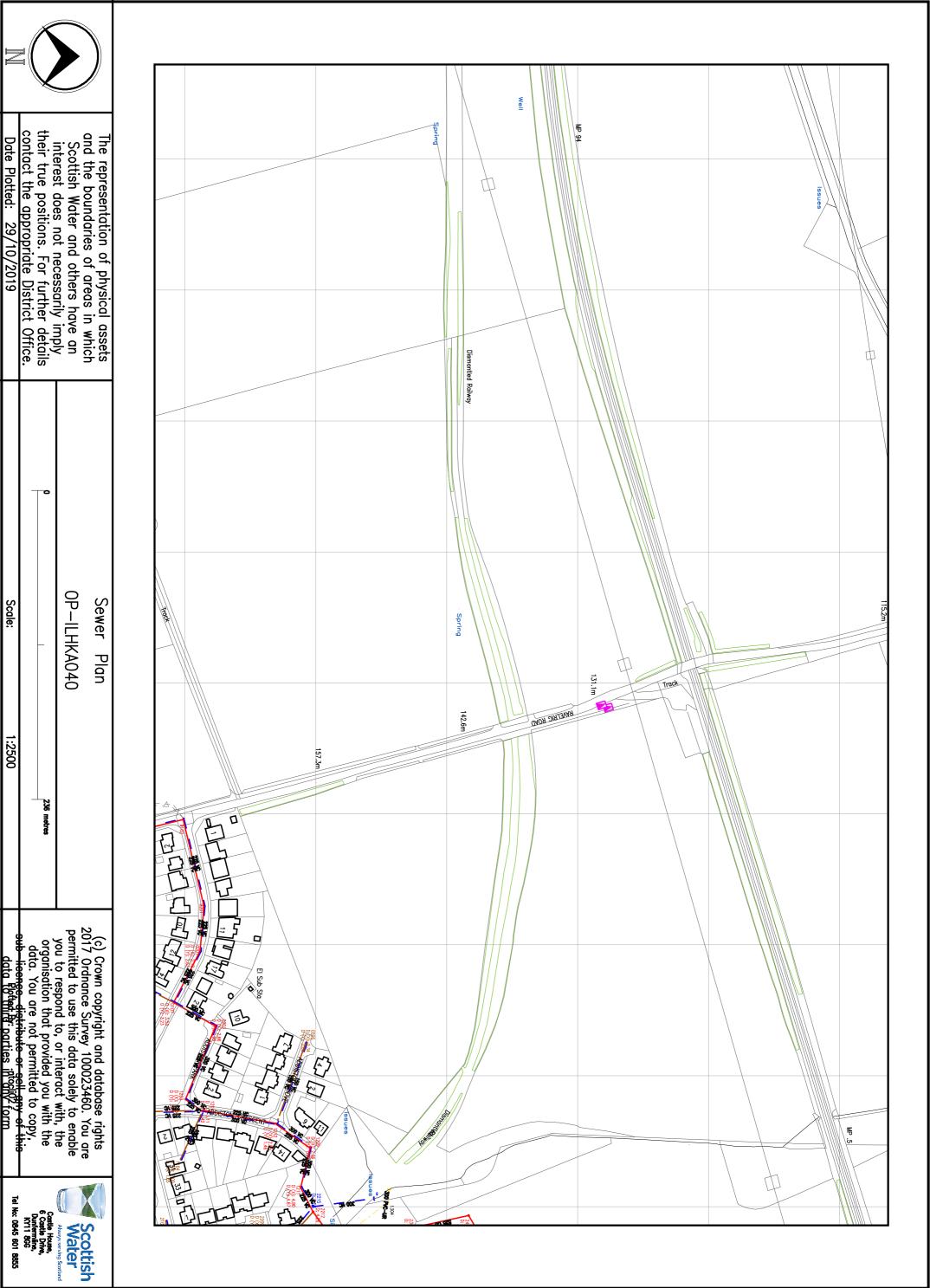
7.4 Further Work Required

- 7.4.1 As discussed in **Sections 3 and 6** of this report, the infiltration potential of the Site should be explored to confirm the viability of using soakaway techniques to discharge surface water generated from the development. This would need to be assessed by conducting BRE 365 soakaway testing on-site, and be carried out prior to the detailed drainage design for the proposed development. The use of infiltration may reduce the volume required for attenuation of surface water runoff and reduce the potential for on-site flooding.
- 7.4.2 The calculations provided within this report indicate that all runoff arising from the proposed development hard-standing areas may be accommodated for all rainfall



events, up to and including the 200 year plus 30% climate change rainfall events. The conceptual surface water drainage strategy (**Drawing 1**) attached indicates that there is available space for an attenuation basin and other controls within the proposed development boundary. The recommended mitigation measures and design outputs provided within this report should be used to provide guidance for the further detailed drainage design of surface water infrastructure required to support any future proposed development.

- 7.4.3 Network Rail should be further consulted, in order to confirm any additional requirements for discharging to the unnamed watercourse at the rate as detailed within the outline DS
- 7.4.4 With the finalisation of a Site layout masterplan, the conceptual drainage strategy detailed herein will need to be updated to reflect any changes to Site permeability and associate surface water runoff and management requirements to support the proposed development.


Appendix 1 – AIRD Group Topographic Survey (Drawing No. G/R/1000)

	Sovar	+	+	+ $+$	+										
	-SOCHC	+	+	+ +	+	+		+	+	+	+	+	+		
	905294 C	- Accession	1011 (101) 				- COLUMN	ND COLOR	101-101	Constants	Constants	POLICIA B	1001010	907000 335501 <u>-</u>	
TOPOGRAPHICAL SURVEY PROJECTINO: G/R/1000 DRAWN BY: AJM SCALE: DRAWN BY: AJM SCALE: DRAWN BY: AJM SCALE: DRAWN BY: AJM SCALE: DATE: OTTE: OTTE: OTTE:	PROJECT RAVELRIG ROAD BALERNO	AIRD GROUP CHARTERED SURVEYORS & CONSULTING ENGINEERS INCORPORATING AND GEOMATICS LTD. AND AIRD DEVELOPMENTS 28 FIELD ROAD BUSBY GLAGGOW G76 BE Tel:- 0141-644 1720 FAX:- 0141-644 1720 FAX:- 0141-644 1720 Website: www.arlogoup.co.uk E-mail: geomatics@airdgroup.co.uk E-mail: geomatics@a	Sheet 2 Sheet 2 Sheet 3 Sheet 3	AMR11 316164_513 667242.971 156.572 PEG AMR12 316164_513 667242.971 156.751 PEG AMR08 316164_517 667213.496 157.12 PEG AMR08 316165.586 667213.406 158.396 PEG AMR0A 316165.586 667213.406 159.396 PEG AMR0A 316165.586 66723.420 140.132 PEG AMR0B 316165.586 66723.910 140.132 PEG SMA1 31696.602 66723.917 164.559 PEG SMA2 31696.602 66734.720 140.132 PEG SMA2 31696.202 66734.720 161.864 PEG SMA2 31696.023 66734.720 161.864 PEG SMA3 31696.023 66734.720 161.864 PEG SMA6 315610.33 66734.720 181.864 PK NAIL SMA6 315610.33 667476.814 130.842 PEG SMA6 3156	WM Water Meter WO Wash Out Itation Easting Northing Level 31589.662 667464.008 120 316155.357 667464.008 148 316155.357 667362.176 148 316155.230 667362.737 148 316155.231 667362.737 148	SL Soffit Level SP Sign Post ST Stop Tap SV Stop Valve SY Stay Wire TCB Telephone Call Box TH Trial Hole TL Traffic Light T/P Tactile Paving TP Telegraph Pole	P/RPost & Rall FenceP/WPost & Wire FenceP/LElectricity PylonRERodding EyeRLRidge LevelRSRoad SignRSJReinforced Steel JoistRWRetaining WallSCStop Cock		문 프 모 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프	EB Electricity Control Box EL Eave Level EP Electricity Pole ER Earthing Rod FB Flower Bed FH Fire Hydrant FL Floor Level GL Greenhouse GP Gate Post		B B B O Air	TELEPHONE LINE FOOTPATH PW HEDGE POLIAGE FOLIAGE FOLIAGE	BUSH TREE DROP KERB DROP KERB TOP BANK EMBANKONENT OVERHEAD ELECTRICITY LINE	CONTROL STATIONS AG2

Appendix 2 – Scottish Water Sewer Plans (Document Ref – OP-ILHKA040)

Appendix 3 – Site Walkover Photographs

Photo 1 – Looking up Ravelrig road from the bridge over the Railway Line.

Photo 2 – Site Access to the eastern via gateway. Alternately, Site access to western portion of the Site provided in same location, opposite side of highway.

Photo 3 – Looking up the unnamed watercourse form north to south towards the start of the housing estate located along the south east corner of the Site.

Photo 4 – Looking down the unnamed watercourse from south to north.

Photo 5 – Looking north down the unnamed watercourse where it meets with the Edinburgh - Glasgow railway line

Photo 6 –Unnamed watercourse passing beneath the Edinburgh - Glasgow railway line through a box culvert

Photo 7 - Land drain running adjacent to the Edinburgh - Glasgow railway line conveying flows to the unnamed watercourse

Photo 8 – Looking north east across the Site from the south western corner of the Site

Photo 9 – Looking towards north eastern corner of the Site from the southern corner of the Site on the eastern side of Ravelrig Road.

Appendix 4 – SEPA Flood Risk Assessment Checklist (SS-NFR-F-001)

Flood Risk Assessment (FRA) Checklist

(SS-NFR-F-001 - Version 13 - Last updated 15/04/2015

This document should be attached within the front cover of any flood risk assessments issued to Local Planning Authorities (LPA) in support of a development proposal which may he at risk of flooding. The document will take only a few minutes to complete and will assist SEPA in reviewing ERAs when consulted by I PAs. This document should not be a

AOD	m AOD	ar plus climate change	200 ye	m AOD		200 year	Design flood levels
				Ť	Select from List		Is the hydraulic model available to SEPA?
				7	Select from List		Has model been calibrated (gauge data / flood records)?
		Select from List		t	Select from List		(2) does it influence water levels at the site?
			Specify if other			Specify if other	
		Select from List			Flow		(1) type
		Downstream			Upstream		boundary conditions:
	<u>68, section 8.4</u>	ert design guide R1	Reference CIRIA culvert design guide R168, section 8.4	%			blockage of structure (range of % blocked)
							variation on channel roughness
				%			variation on flow (%)
							Brief summary of sensitivity tests, and range:
			Specify, if combination	Ť	Select from List		Any structures within the modelled length?
				Э			Modelled reach length
							If other please specify
	n List	Select from List	Software used:		n/a		Hydraulic modelling method
							Hydraulics
Select from List	n included	have group details been included	If Pooled analysis hav				
	,;;	y methodology usec	If other (please specify methodology used):		Rainfall-runoff		Estimation method(s) used *
				42 m³/s	0.42		Estimate of 200 year design flood flow
	escriptors	Catchment Descriptors	Method:	14 m³/s	0.14		Qmed estimate
				22.13 km [∠]	22.		Area of catchment
							Hydrology
				sland	Greenfield, grassland		Current / historical site use
	on offered	the standard of protection offered	If known, state the		No		Is a formal flood prevention scheme present?
					Yes		Has a historic flood search been undertaken?
					Yes		(including topographic and flood inundation plans)
				_			Have clear maps / plans been provided within the FRA
							Supporting Information
		Surface Water	Source name:		Pluvial	Source:	Identified Flood Risk
				13 Ha	22.13		Size of the development site
		Not Known	If residential, state type:		Residential		Nature of the development
							Planning Reference number (if known)
			Edinburgh City Council	Edinburg			Local Authority
			Northing: 667273	Z	315788	Easting:	Grid Reference
					Land at Balerno		
							Site Name
							Development Proposal
							substitute for a FRA.
KAS, when consulted by LEAS. This document should not be a	ed by LEAS. II	As, When Consult	7	U WIII dos	o complete an	a rew minutes u	be at risk of hooding. The document will take only a few initiates to complete and will assist SEFA in reviewing

PAGE 1 of 2

×
Ĝ
Ш П
0
fN

d with other accepted methods.	hod should be compared w	se of this met	Scotland. Any u	* ReFH2 is now accepted by SEPA for flow estimates in Scotland. Any use of this method should be compared with other a
sssed here:- CLICK HERE	olders' which can be access:	nce for Stakeh	Flood Risk Guida	Note: Further details and guidance is provided in Technical Flood Risk Guidance for Stakeholders' which can be accesssed here:-
08/11/2019			ECUS Ltd	Approved by: Organisation: ECUS Ltd Date:
age flows in up to the 1 in 200yr +30CC annual probability event.	SuDS system adequatley sized to manage flows in up	SuDS system		
ly a low risk of pluvial flooding. This will be mitigated through the implementation of a	fluvial or ground water flooding, with only a low risk of	fluvial or grou		
A Flood Risk Assessment (Ref: 13582/FRA/001) identifies the Site not to be at any singifcant risk of flooding from pluvial,	Assessment (Ref: 13582/FR	A Flood Risk		Any additional comments:
				Comments
		No		be used?
				Should water resistant materials and forms of construction
		No		Demonstration of compensatory storage on a "like for like" basis?
		No		If yes, is compenstory storage necessary?
		No		Is mitigation proposed?
		Yes		flooding?
				Can development be designed to avoid all areas at risk of
				Mitigation
Min FFL: NA MAOD	m AOD		Ground level	Design levels
Max Flood Velocity: NA m/s	m	NA	@ 200 year event:	If there is no dry access, what is the impact on the access routes?
		-	Max Flood Depth	
	years	NA		If there is no dry access, what return period is dry access available?
Min access/egress level NA m AOD	List	Select from List		Is safe / dry access and egress available?
If yes, has consideration been given to 1000 year design flood? Select from List	If ye:	No		Is the development for essential civil infrastructure or vulnerable groups?
	m	NA		Freeboard on design water level (m)
	d	Greenfield		Is the site brownfield or greenfield
If yes, what is the net loss of storage NA m ³	lt y	No		Is any of the site within the functional floodplain? (refer to SPP para 255)
				Development
	m AOD	NA		Overall design flood level
	m	NA		Allowance for wave action etc (m)
	m	NA		Allowance for climate change (m)
If other (please specify methodology used):		Select from List		Estimation method(s) used
	m AOD	NA		Estimate of 200 year design flood level
				Coastal
(SS-NFR-F-001 - Version 13 - Last updated 15/04/2015	Checklist	: (FRA)	essment	SEPA Flood Risk Assessment (FRA) Checklist

Appendix 5 – MicroDrainage Greenfield Runoff Rate Estimation Calculations (IH-124 & ICP-SUDS)

Ecus Ltd		Page 1
165E Burton Rd		
West Didsbury		
M20 2LN		Mirro
Date 07/11/2019 16:20	Designed by Ecus Manchester	Drainage
File	Checked by	Diamade
Innovyze	Source Control 2019.1	
ICP SUD	S Mean Annual Flood	
	Input	
Return Period (year Area (h	rs) 100 Soil 0.470 ha) 22.130 Urban 0.000	
SAAR (n	nm) 895 Region Number Region 2	

Results 1/s

QBAR Rural 142.4 QBAR Urban 142.4 Q100 years 374.6 Q1 year 123.9 Q30 years 270.2 Q100 years 374.6

Ecus Ltd		Page 1
165E Burton Rd		
West Didsbury		
M20 2LN		Micro
Date 07/11/2019 16:18	Designed by Ecus Manchester	
File	Checked by	Drainage
Innovyze	Source Control 2019.1	
<u>IH</u> :	124 Mean Annual Flood	
	Input	
	years) 100 Soil 0.470 a (ha) 22.130 Urban 0.000 R (mm) 895 Region Number Region 2	
	Results 1/s	
	QBAR Rural 155.8 QBAR Urban 155.8	
	Q100 years 409.7	
Practice recommends that the IH124	Q1 year 135.5 Q2 years 142.4 Q5 years 183.8 Q10 years 221.2 Q20 years 266.0 Q25 years 282.3 Q30 years 295.5 Q50 years 338.7 Q100 years 409.7 Q200 years 464.3 Q250 years 483.0 Q1000 years 599.8 IH124 method with an area < 50ha. The I method is applied with 50ha and the rest the required area. The ICP SUDS tab with	lting discharge
· ·	automatically.	

Appendix 6 - Microdrainage Source Control Simulation for Sub-surface Attenuation Tank System

Ecus Ltd									Page 1
.65E Burton Rd				1358	32				
Vest Didsbury				Bale	erno				
420 2LN									Micco
Date 07/11/2019)			Desi	gned by	V JE			
File 13582-1 in		+00	Bag		ked by	_			Drainag
	1 30y1		, Das				010 1		_
Innovyze				Sour	ce Con	trol 2	019.1	-	
_							_		
Sur	nmary	ot l	Result	s for 3	0 year	Retur	n Per	iod (+30%)	-
		Stor	m	Max	Max	Max	Max	Status	
		Even	t	Level	-			e	
				(m)	(m)	(l/s)	(m³)		
	15	min	Summer	120.456	0.256	58.3	1632.	з ок	
				120.549			2246.		
	60	min	Summer	120.650	0.450	98.1	2942.	4 ОК	
	120	min	Summer	120.754	0.554	99.5	3670.	о ок	
	180	min	Summer	120.813	0.613	99.6	4094.	9 ОК	
	240	min	Summer	120.852	0.652	99.6	4376.	5 ОК	
				120.899			4717.		
				120.928			4936.		
				120.949			5091.3		
				120.964			5201.		
				120.982			5334.		
				120.989			5388. 5225.		
				120.907			4943.		
				120.842			4304.		
				120.761			3716.		
	7200	min	Summer	120.692	0.492	98.9	3234.	7 ОК	
	8640	min	Summer	120.637	0.437	97.8	2852.	6 ОК	
	10080	min	Summer	120.595	0.395	96 5	2563.	7 ОК	
						20.0	2000.		
				120.486		68.8	1826.		
				120.486 120.589		68.8			
	30		Winter		0.389	68.8 96.2	1826. 2518.		
	30	min	Winter m	120.589 Rain	0.389 Flooded Volume	68.8 96.2 Discha Volu	1826. 2518. arge T: me	ЗОК	
	30	min Stor	Winter m	120.589 Rain	0.389 Flooded	68.8 96.2 Discha	1826. 2518. arge T: me	З ОК ime-Peak	
	30	min Stor Even min	Winter m t Summer	120.589 Rain (mm/hr) 57.549	0.389 Flooded Volume (m ³) 0.0	68.8 96.2 Discha Volu (m ³ 133	1826.0 2518.3 arge T: me) 31.3	3 ОК ime-Peak (mins) 26	
	30 15 30	min Stor Even min min	Winter m t Summer Summer	Rain (mm/hr) 57.549 40.351	0.389 Flooded Volume (m ³) 0.0 0.0	68.8 96.2 Discha Volu (m ³ 133 196	1826. 2518. arge T. me) 31.3 59.3	3 ОК ime-Peak (mins) 26 40	
	30 15 30 60	min Stor Even min min min	Winter m t Summer Summer Summer	120.589 Rain (mm/hr) 57.549 40.351 27.116	0.389 Flooded Volume (m ³) 0.0 0.0 0.0	68.8 96.2 Discha Volu (m ³ 133 196 294	1826.(2518.) arge T. me) 31.3 59.3 49.3	3 ОК ime-Peak (mins) 26 40 68	
	30 15 30 60 120	min Stor Even min min min min	Winter m t Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0	68.8 96.2 Discha Volu (m ³ 133 196 294 385	1826. 2518. arge T. me) 31.3 59.3 49.3 74.5	3 ОК ime-Peak (mins) 26 40 68 126	
	30 15 30 60 120 180	min Stor Even min min min min min	Winter m t Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8	3 ОК ime-Peak (mins) 26 40 68 126 184	
	30 15 30 60 120 180 240	min Stor Even min min min min min min	Winter m t Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499	1826. 2518. arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6	3 ОК ime-Peak (mins) 26 40 68 126 184 242	
	30 15 30 60 120 180 240 360	min Stor Even min min min min min min	Winter m t Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 63.5	3 ОК ime-Peak (mins) 26 40 68 126 184 242 340	
	30 15 30 60 120 180 240 360 480	min Stor Even min min min min min min min	Winter m t Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636	1826. 2518. arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6	3 ОК ime-Peak (mins) 26 40 68 126 184 242	
	30 15 30 60 120 180 240 360 480 600	min Stor Even min min min min min min min min	Winter m t Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6	3 ОК ime-Peak (mins) 26 40 68 126 184 242 340 404	
	30 15 30 60 120 180 240 360 480 600 720	min Stor Even min min min min min min min min min mi	Winter m t Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 56.1	3 ОК ime-Peak (mins) 26 40 68 126 184 242 340 404 470	
	30 15 30 60 120 180 240 360 480 600 720 960 1440	min Stor Even min min min min min min min min min mi	Winter m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913	1826. 2518. arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 55.5 54.6 56.1 99.7 28.2 39.2	3 ОК ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160	min Stor Even min min min min min min min min min mi	Winter m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 554.6 56.1 99.7 28.2 39.2 25.3	3 ОК ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Stor Even min min min min min min min min min mi	Winter m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082 1185	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 554.6 56.1 99.7 28.2 39.2 25.3 99.6	3 O K ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Stor Even min min min min min min min min min mi	Winter m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082 1188 1351	1826.(2518.) arge T. me) 31.3 59.3 19.3 74.5 04.8 96.6 53.5 54.6 554.6 56.1 99.7 28.2 39.2 25.3 99.6 16.9	3 O K ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764 2548	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Stor Even min min min min min min min min min mi	Winter m t Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082 1189 1351 1507	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 554.6 564.6 56.1 99.7 28.2 39.2 25.3 99.6 16.9 71.2	3 OK ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764 2548 3280	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min Stor Even min min min min min min min min min mi	Winter m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082 1188 1351 1507	1826.(2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 554.6 564.6 564.1 99.7 28.2 39.2 25.3 99.6 16.9 71.2 38.6	3 O K ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764 2548 3280 3968	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Stor Even min min min min min min min min min mi	Winter m t Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082 1189 1351 1507 1618 1714	1826.(2518.) 2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 55.3 54.6 56.1 99.7 28.2 25.3 99.6 16.9 71.2 38.6 40.7	3 OK ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764 2548 3280 3968 4664	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Stor Even min min min min min min min min min mi	Winter Mat Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	120.589 Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034 0.931	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 499 576 636 686 729 802 913 1082 1189 1351 1507 1618 1714	1826.(2518.) 2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 55.3 54.6 56.1 99.7 28.2 25.3 99.6 16.9 71.2 38.6 40.7 38.6	3 O K ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764 2548 3280 3968 4664 5344	
	30 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Stor Even min min min min min min min min min mi	Winter Mat Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 57.549 40.351 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034	0.389 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.8 96.2 Discha Volu (m ³ 133 196 294 387 450 636 636 636 636 636 636 729 307 1082 1082 1189 1351 1507 1618 1714	1826.(2518.) 2518.) arge T. me) 31.3 59.3 49.3 74.5 04.8 96.6 53.5 54.6 55.3 54.6 56.1 99.7 28.2 25.3 99.6 16.9 71.2 38.6 40.7	3 OK ime-Peak (mins) 26 40 68 126 184 242 340 404 470 536 674 956 1368 1764 2548 3280 3968 4664	

						Page 2
165E Burton Rd		1358				
West Didsbury		Bale	erno			
M20 2LN						Micco
Date 07/11/2019		Desi	gned b	y JE		Desigas
File 13582-1 in 30y	r +CC Bas		ked by	-		Drainac
Innovyze				trol 2019	1	
111110 1 9 2 0				2101 2019	• -	
Summary	y of Result:	s for 3	0 year	Return Pe	eriod (+30%)	_
	Storm	Max	Max Dombh (Max Ma		
	Event	Level (m)	(m)	Control Volu (1/s) (m		
		(111)	(111)	(1/3) (m	,	
6	50 min Winter	120.704	0.504	99.1 3313	3.8 ОК	
	20 min Winter			99.6 415	0.4 ОК	
	30 min Winter			99.6 464	6.4 ОК	
24	0 min Winter	120.935	0.735	99.6 498	3.0 ОК	
	50 min Winter			99.6 540		
	30 min Winter			99.6 564		
	0 min Winter			99.6 578		
	0 min Winter			99.6 588		
	50 min Winter			99.6 599		
	0 min Winter			99.6 593		
	50 min Winter			99.6 554		
	30 min Winter			99.6 501		
	0 min Winter			99.6 394		
	50 min Winter			98.6 3093		
	0 min Winter			96.2 251		
	0 min Winter			89.7 224 82.0 207		
	Storm Event	Rain (mm/hr)	Volume		Time-Peak (mins)	
				-		
e		(mm/hr)	Volume (m³)	Volume (m ³)		
12	Event 50 min Winter 20 min Winter	(mm/hr) 27.116 17.601	Volume (m ³) 0.0	Volume (m ³) 3322.7 4358.5	(mins) 68 124	
12	Event 50 min Winter 20 min Winter 30 min Winter	(mm/hr) 27.116 17.601 13.575	Volume (m ³) 0.0 0.0	Volume (m ³) 0 3322.7 0 4358.5 0 5063.9	(mins) 68 124 182	
12 18 24	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter	(mm/hr) 27.116 17.601 13.575 11.262	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 0 3322.7 4358.5 5063.9 5614.2	(mins) 68 124 182 238	
12 18 24 36	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³)) 3322.7 4358.5 5063.9 5614.2 0 6472.1	(mins) 68 124 182 238 350	
12 18 24 36 48	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter 30 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9	(mins) 68 124 182 238 350 458	
12 18 24 36 48 60	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter 50 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0	(mins) 68 124 182 238 350 458 552	
12 18 24 30 48 60 72	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9	(mins) 68 124 182 238 350 458 552 580	
12 18 24 36 48 60 72 96	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4	(mins) 68 124 182 238 350 458 552 580 736	
12 18 24 36 48 60 72 96 144	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1	(mins) 68 124 182 238 350 458 552 580 736 1046	
12 18 24 36 48 60 72 96 144 216	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter 50 min Winter 50 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2	(mins) 68 124 182 238 350 458 552 580 736 1046 1492	
12 18 24 36 48 60 72 96 144 216 288	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904	
12 18 24 36 48 60 72 96 144 216 288 432	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1	(mins) 68 124 182 238 350 458 552 580 736 1046 1492	
12 18 24 36 48 60 72 96 144 216 288 432 576	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352	
12 18 24 36 48 60 72 96 144 216 286 432 576 720	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 6890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	
12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	Event 50 min Winter 20 min Winter 30 min Winter 40 min Winter 50 min Winter	<pre>(mm/hr) 27.116 17.601 13.575 11.262 8.635 7.143 6.162 5.460 4.509 3.441 2.625 2.166 1.650 1.359 1.169 1.034</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 3322.7 4358.5 5063.9 5614.2 6472.1 7143.9 7704.0 8187.9 8999.4 10230.1 12136.2 13342.8 15172.1 16890.4 18145.4 19218.5	(mins) 68 124 182 238 350 458 552 580 736 1046 1492 1904 2680 3352 3968 4592	

Ecus Ltd		Page 3
165E Burton Rd	13582	
West Didsbury	Balerno	
M20 2LN		Micro
Date 07/11/2019	Designed by JE	Drainage
File 13582-1 in 30yr +CC Bas		brainiage
Innovyze	Source Control 2019.1	
	Rainfall Details	
Rainfall Model Return Period (years)	FSR Winter Stor 30 Cv (Summe	
-	tland and Ireland CV (Winte	
M5-60 (mm)	13.700 Shortest Storm (min	
Ratio R Summer Storms	0.250 Longest Storm (min Yes Climate Change	
		0 .00
	Time Area Diagram	
Т	otal Area (ha) 15.490	
	Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha	
0 4 5.170	4 8 5.160 8 12 5.1	60
	Time Area Diagram	
	Total Area (ha) 0.000	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.000	
	1982-2019 Innovyze	

165E Burton Rd 13582 West Didsbury Balerno 20 21N Designed by JE Date 07/11/2019 Designed by JE Checked by JG Checked by JG Innovyze Source Control 2019.1 Model Details Storage is Online Cover Level (m) 121.500 Tank or Pond Structure Invert Level (m) 120.200 Depth (m) Area (m') 0.000 6150.0 Distered (m) Unit Reference MD-SHE-0390-9960-1300-9960 Design field (m) Distered (m) Distestime Di	Ecus Ltd						Page 4
220 2LN Date 07/11/2019 Designed by JE Checked by JG Source Control 2019.1 Model Details Storage is Online Cover Level (m) 121.500 Tank or Pond Structure Innovyze Model Details Storage is Online Cover Level (m) 121.500 Tank or Pond Structure Invert Level (m) 120.200 Depth (n) Area (m²) 0.000 6150.0 0.000 6150.0 Depth (m) Area (m²) Depth (m) Area (m²) Design Read (m) Design Flow (1/a) Besign Read (m) Design Point (Calculated) Other I Pipe Diameter (mn) Design Point (Calculated) Design Point (Calculated) Other I Pipe Diameter (mn) Surgested Manhole Diameter (mn) Control Points Bead (m) Flow (1/s) Design Point (Calculated) Other Pipe Diameter (mn) Diameter (mn)	65E Burton Ro	٤	13582			(
bate 07/11/2019 Pile 13582-1 in 30yr +CC Bas Ennovyze Source Control 2019.1 Model Details Storage is online Cover Level (m) 121.500 Tank or Fond Structure Invert Level (m) 120.200 Depth (m) Area (m ²) 0.000 6150.0 1.300 8509.5 Hydro-Brake© Optimum Outflow Control Unit Reference MD-SHE-0390-9960-1300-9960 Design Head (m) 1.300 Beign Flow (1/s) Calculated Objective Minimise upstream storage Application Surface Biameter (mn) 390 Invert Level (m) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mn) Site Specific Design (Contact Hydro International) Control Points Head (m) 1.20.200 Minimum Outlet Fipe Diameter (mn) 390 Invert Level (m) 120.200 Minimum Outlet Fipe Diameter (mn) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-FIO [®] 0.587 99.6 Kick-FIO0 1.022 88.6 Mean Flow over Head Range - 7.9 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 10.8 0.200 38.6 1.400 103.2 0.200 37.4.0 1.600 110.2 0.400 96.6 1.600 110.2 0.400 96.6 1.600 110.2 0.600 97.2 2.400 128.6 5.500 201.0 0.600 97.2 2.400 128.6 5.500 201.0 0.600 97.2 2.400 128.6 5.500 201.0 0.500 210.0	Vest Didsbury		Balerno				-
Designed by JE Designed by JE Pile 13582-1 in 30yr +CC Bas Checked by JG Model Details Source Control 2019.1 Model Details Storage is online cover Level (m) 121.500 Tank or Fond Structure Invert Level (m) 120.200 Depth (m) Area (m ²) Depth (m) Area (m ²) 0.000 6150.0 1.300 8509.5 Hydro-Brake@ Optimum Outflow Control Invert Level (m) 1.300 Design Head (m) 1.300 8509.5 Hydro-Brake@ Optimum Outflow Control 1.300 99.6 Design Flow (1/s) Surface Surface Sump Available Yes 330 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Piont (Calculated) 1.300 99.6 Flush-Flo ^m Calculational Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Minimum Outlet Pipe Diameter (mm) Site Specific Design (contact Hydro International) Hesign Point (Calculate	420 2LN						Micco
Prile 13582-1 in 30yr +CC Bas Checked by JG Model Details Storage is Online Cover Level (m) 121.500 Tank or Pond Structure Invert Level (m) 120.200 Depth (m) Area (m ³) Depth (m) Area (m ³) 0.000 6150.0 1.300 0.000 6150.0 1.300 Destign Flow (1/s) 99.6 Flush-Flow Calculated Objective Minimise upstream storage Application 390 Invert Level (m) 120.200 Invert Level (m) 120.200 Diameter (mm) 99.6 Flush-Flow Calculated Objective Minimise upstream storage Application 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) 120.200 Minimum Outlet Pipe Diameter (mm) 120.200 Minimum Outlet Pipe Diameter (mm) 120.20 Minimum Outlet Pipe Diameter (mm) 120.20 Mach Piow over Head Range 73.9 The hydrological calculations have been based on the Head/Discharge relationship for thyd		19	Designed	d by JE			
Internet District Distres Distres District District District District District District			_	-			Urainaq
Model Details Storage is Online Cover Level (m) 121.500 Tank or Pond Structure Invert Level (m) 120.200 Depth (m) Area (m ²) Depth (m) Area (m ²) 0.000 6150.0 1.300 8509.5 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0390-9960-1300-9960 Design Flow (1/s) 99.6 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) 615 Suggested Manhole Diameter (mm) 120.200 Mean Flow over Head Range 79.9 The hydrological calculations have been based on the Head/Discharge relationship for tl Hydro-Brake Optimum as apecified. Should another type of control device other han a Hydro-Brake Optimum as apecified. Should another type of control device other han a Hydro-Brake Optimum as apecified. Should another type of control device other han a Olio0 10.8 0.100 <td></td> <td></td> <td></td> <td></td> <td>2010 1</td> <td></td> <td>2</td>					2010 1		2
Jame	linovyze		Source C	LONCIOL	2019.1		
Tank or Pond Structure Invert Level (m) 120.200 Depth (m) Area (m²) 0.000 6150.0 1.300 8509.5 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0390-9960-1300-9960 Design Flow (1/s) 9.6 Calculated Diameter (ma) 9.6 Flush-Plo* Calculated Objective Minimise upstream storage Surgaceted Manhole Diameter (mm) Storage colspan="2">3900 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 9.6 Suggested Manhole Diameter (mm) Storage could another type of control device other thana Minimum Outlet Pipe Diameter (mm) Storage could another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than			Model Det	ails			
Invert Level (m) 120.200 Depth (m) Area (m²) Depth (m) Area (m²) 0.000 6150.0 1.300 8509.5 Hydro-Brake® Optimum Outflow Control MD-SHE-0390-9960-1300-9960 1.300 Design Head (m) 1.300 99.6 Flush-Flo® Calculated 00/9 citive Minimise upstream storage Application Surface 100.20.200 100.20.200 Minimum Outlet Pipe Diameter (mm) 390 100.20.200 100.20.200 Minimum Outlet Pipe Diameter (mm) 390 100.20.200 100.20.200 Minimum Outlet Pipe Diameter (mm) 510.20.200 10.20.200 10.20.200 Minimum Outlet Pipe Diameter (mm) Ste Specific Design (Contact Hydro International) 390 Control Points Head (m) Flow (l/s) Peth (m) Flow (l/s) 100.20.200 Mising Point (Calculated) 1.020 99.6 Flush-Flo® 1.022 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum be utilised then these storage routing calculations will be inval		Storage is (Online Cover	Level (1	m) 121.500		
Depth (m) Area (m²) Depth (m) Area (m²) 0.000 6150.0 1.300 8509.5 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0390-9960-1300-9960 Design Head (m) 1.300 Design Flow (1/s) 99.6 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Ste Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flo® 0.587 99.6 Flush-Flo® 0.587 99.6 Flush-Flo® 1.022 88.6 Mean Flow over Head Range 7 9.9 The hydrological calculations have been based on the Head/Discharge relationship for ti Hydro-Brake Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) <th< td=""><td></td><td>Tanl</td><td>k or Pond S</td><td>Structu</td><td>re</td><td></td><td></td></th<>		Tanl	k or Pond S	Structu	re		
0.000 6150.0 1.300 8509.5 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0390-9960-1300-9960 Design Head (m) 1.300 Design Flow (1/s) 99.6 Flush-Flo* Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Surgested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Mead (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flo* 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 Sthehydrological calculations have been based on the Head/Distarge relationship for t Hydro-Brake Optimum as specified. Should another type of control device other than a Loudo 1.200 95.8 3.000 149.6 7.000		Inv	ert Level (m	n) 120.20	0		
Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0390-9960-1300-9960 Design Flow (1/s) 99.6 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Ste Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 Suggested Manhole Diameter (mm) Ste Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 Kick-Flo [®] 1.022 Mean Flow over Head Range - Ydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of Control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of Control device other than a Hydro-Brake@ Optimum of the these storage routing calculations will be invalidated D		Depth (m) A	Area (m²) Dej	pth (m)	Area (m²)		
Unit Reference MD-SHE-0390-9960-1300-9960 Design Head (m) 1.300 Design Flow (1/s) 99.6 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Stef Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 Suggested Manhole Diameter (mm) Stef Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flo ^m 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for til Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) <td></td> <td>0.000</td> <td>6150.0</td> <td>1.300</td> <td>8509.5</td> <td></td> <td></td>		0.000	6150.0	1.300	8509.5		
Design Head (m) 1.300 Design Flow (1/s) 99.6 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) 450 Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Foint (Calculated) 1.300 99.6 Flush-Flo ^m 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600		Hydro-Brake	e® Optimum	Outflo	w Control		
Design Flow (1/s) 99.6 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) Suggested Manhole Diameter (mm) Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flo ^m 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000		Unit Reference			MD-SHE-	0390-9960-	1300-9960
Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.300 99.6 Flush-Flo [®] 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Pepth (m) Flow (l/s) Pepth (m) Flow (l/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3							1.300
Objective Application Minimise upstream storage Surface Sump Available Yes Sumeter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) \$50 Sugested Manhole Diameter (mm) \$120.200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.300 99.6 Flush-Flo ^m 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for til Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ 0, 10.8 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6							99.6
Application Surface Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.300 99.6 Flush-Flo ^{ma} 0.587 99.6 Kick-Flo ^{ma} 0.587 99.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 10.8 1.200 95.8 3.000 149.6 0.100 10.8 1.200 95.8 3.000 149.6 0.200 38.6 1.400 103.2							
Sump Available Yes Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.300 99.6 Flush-Flom 0.587 99.6 Kick-Flo@ 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t' Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9		-			Minimi	se upstrea	-
Diameter (mm) 390 Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) 450 Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flom* 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 124.4 8.500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Invert Level (m) 120.200 Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flo™ 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated 120.200 Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.500 224.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-					
Minimum Outlet Pipe Diameter (mm) 450 Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flo™ 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International) Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.300 99.6 Flush-Flom* 0.587 99.6 Kick-Flo@ 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.200 128.6 5.5	Minimum Outle	. ,					
Design Point (Calculated) 1.300 99.6 Flush-Flo™ 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.200 128.6 5.500 201.3 9.500 263.2<		-		ic Desig	n (Contact H	ydro Inter	
Flush-Flo™ 0.587 99.6 Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for t Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.200 128.6 5.500 201.3 9.500 263.2 0.800 97.2		Control	Points	Head (m)) Flow (l/s)		
Kick-Flo® 1.022 88.6 Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.200 128.6 5.500 201.3 9.500 263.2		Design Point	(Calculated)	1.30	99.6		
Mean Flow over Head Range - 79.9 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s)		-					
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than an Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.200 128.6 5.500 201.3 9.500 263.2 0.800 97.2 2.400 134.2 6.000 210.0 140.0			Kick-Flo®	1.02	2 88.6		
Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.400 134.2 6.000 210.0 163.2		Mean Flow over	r Head Range		- 79.9		
0.100 10.8 1.200 95.8 3.000 149.6 7.000 226.5 0.200 38.6 1.400 103.2 3.500 161.3 7.500 234.3 0.300 74.0 1.600 110.2 4.000 172.2 8.000 241.9 0.400 96.6 1.800 116.7 4.500 182.4 8.500 249.2 0.500 99.0 2.000 122.8 5.000 192.1 9.000 256.3 0.600 99.6 2.200 128.6 5.500 201.3 9.500 263.2 0.800 97.2 2.400 134.2 6.000 210.0 263.2		Optimum as specified.	Should ano	ther typ	e of control	device ot	her than a
0.20038.61.400103.23.500161.37.500234.30.30074.01.600110.24.000172.28.000241.90.40096.61.800116.74.500182.48.500249.20.50099.02.000122.85.000192.19.000256.30.60099.62.200128.65.500201.39.500263.20.80097.22.400134.26.000210.010.0	Hydro-Brake Op						(1/s)
0.30074.01.600110.24.000172.28.000241.90.40096.61.800116.74.500182.48.500249.20.50099.02.000122.85.000192.19.000256.30.60099.62.200128.65.500201.39.500263.20.80097.22.400134.26.000210.04.500210.0	Hydro-Brake Op invalidated	w (l/s) Depth (m) Fl	low (1/s) Deg	pth (m)	Flow (l/s) De	epth (m) F	101 (1/0)
0.40096.61.800116.74.500182.48.500249.20.50099.02.000122.85.000192.19.000256.30.60099.62.200128.65.500201.39.500263.20.80097.22.400134.26.000210.010.0	Hydro-Brake Op invalidated Depth (m) Flo 0.100	10.8 1.200	95.8	3.000	149.6	7.000	226.5
0.50099.02.000122.85.000192.19.000256.30.60099.62.200128.65.500201.39.500263.20.80097.22.400134.26.000210.0263.2	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200	10.8 1.200 38.6 1.400	95.8 103.2	3.000 3.500	149.6 161.3	7.000 7.500	226.5 234.3
0.60099.62.200128.65.500201.39.500263.20.80097.22.400134.26.000210.0	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300	10.8 1.200 38.6 1.400 74.0 1.600	95.8 103.2 110.2	3.000 3.500 4.000	149.6 161.3 172.2	7.000 7.500 8.000	226.5 234.3 241.9
0.800 97.2 2.400 134.2 6.000 210.0	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800	95.8 103.2 110.2 116.7	3.000 3.500 4.000 4.500	149.6 161.3 172.2 182.4	7.000 7.500 8.000 8.500	226.5 234.3 241.9 249.2
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000	95.8 103.2 110.2 116.7 122.8	3.000 3.500 4.000 4.500 5.000	149.6 161.3 172.2 182.4 192.1	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200	95.8 103.2 110.2 116.7 122.8 128.6	3.000 3.500 4.000 4.500 5.000 5.500	149.6 161.3 172.2 182.4 192.1 201.3	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3
	Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	226.5 234.3 241.9 249.2 256.3

						Page 1
.65E Burton	Rd	13582	2			
Vest Didsbu	iry	Bale	rno			
M20 2LN						Micro
Date 07/11/	2019	Desid	gned by	JE		
	-1 in 200yr +CC Ba		ked by J			Drainag
Innovyze			ce Contr		1	
11110 V y 2 C		bour		01 2019.	±	
	Summary of Resul	ts for 20	0 vear B	eturn Pe	ariod $(+30\%)$	
	Summary of Resul	01 20	<u>o year</u> n		:1100 (130%)	_
	Storm	Max M	lax Max	Max	Status	
	Event	Level De	pth Contr	ol Volume		
		(m) ((m) (1/s) (m³)		
	15 min Summer	100 574 0	274 05	6 2420 2	ОК	
	30 min Summer			.6 2420.3 .3 3416.2	0 K	
	60 min Summer			.6 4550.3		
	120 min Summer			.6 5690.9	ΟK	
	180 min Summer			.6 6373.3	ОК	
	240 min Summer	121.178 0.	978 99	.6 6844.6	0 K	
	360 min Summer				Flood Risk	
	480 min Summer				Flood Risk	
	600 min Summer				Flood Risk	
	720 min Summer				Flood Risk	
	960 min Summer				Flood Risk	
	1440 min Summer 2160 min Summer				Flood Risk Flood Risk	
	2880 min Summer				Flood Risk	
	4320 min Summer				Flood Risk	
	5760 min Summer			.6 6255.5	0 K	
	7200 min Summer	120.994 0.	794 99	.6 5427.1	0 K	
	8640 min Summer	120.897 0.	697 99	.6 4704.6	O K	
	10080 min Summer			.6 4096.7		
	15 min Winter			.2 2713.7		
	30 min Winter	120.778 0.	510 99	.6 3838.4	0 K	
	Storm	Rain	Flooded D	ischarge !	Time-Peak	
	Event	(mm/hr)	** - 1	Volume	(mins)	
	Lvene		volume	vorume		
	Litene		(m ³)	(m ³)		
			(m³)	(m³)	2.6	
	15 min Summe 30 min Summe	er 85.691			26 40	
	15 min Summe	er 85.691 er 61.039	(m³) 0.0	(m³) 2110.0		
	15 min Summe 30 min Summe	er 85.691 er 61.039 er 41.247	(m ³) 0.0 0.0	(m ³) 2110.0 3114.2	40	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263	(m ³) 0.0 0.0 0.0 0.0 0.0	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9	40 70 128 186	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1	40 70 128 186 246	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2	40 70 128 186 246 364	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4	40 70 128 186 246 364 482	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7	40 70 128 186 246 364 482 600	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1	40 70 128 186 246 364 482 600 656	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 600 min Summe 720 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0	40 70 128 186 246 364 482 600 656 776	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8	40 70 128 186 246 364 482 600 656 776 1038	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 600 min Summe 720 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0	40 70 128 186 246 364 482 600 656 776	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 600 min Summe 960 min Summe 1440 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645 er 2.979	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8 15053.9	40 70 128 186 246 364 482 600 656 776 1038 1456	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645 er 2.979 er 2.237	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8 15053.9 16386.5	40 70 128 186 246 364 482 600 656 776 1038 1456 1876	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2160 min Summe 2880 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645 er 2.979 er 2.237 er 1.824	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8 15053.9 16386.5 18374.7	40 70 128 186 246 364 482 600 656 776 1038 1456 1876 2692	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2480 min Summe 2480 min Summe 360 min Summe 360 min Summe 360 min Summe 3700 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645 er 2.979 er 2.237 er 1.824 er 1.556 er 1.366	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8 15053.9 16386.5 18374.7 20254.8 21577.7 22694.5	40 70 128 186 246 364 482 600 656 776 1038 1456 1876 2692 3464 4184 4928	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2480 min Summe 2480 min Summe 360 min Summe 240 min Summe 360 min Summe 3700 min Summe 3700 min Summe 3640 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645 er 2.979 er 2.237 er 1.824 er 1.556 er 1.366 er 1.223	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8 15053.9 16386.5 18374.7 20254.8 21577.7 22694.5 23622.0	40 70 128 186 246 364 482 600 656 776 1038 1456 1876 2692 3464 4184 4928 5560	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2480 min Summe 2480 min Summe 360 min Summe 360 min Summe 360 min Summe 3700 min Summe	er 85.691 er 61.039 er 41.247 er 26.488 er 20.263 er 16.694 er 12.665 er 10.391 er 8.905 er 7.847 er 6.422 er 4.838 er 3.645 er 2.979 er 2.237 er 1.824 er 1.556 er 1.366 er 1.223 er 85.691	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 2110.0 3114.2 4569.0 5906.6 6792.9 7468.1 8499.2 9289.4 9936.7 10486.1 11381.0 12603.8 15053.9 16386.5 18374.7 20254.8 21577.7 22694.5	40 70 128 186 246 364 482 600 656 776 1038 1456 1876 2692 3464 4184 4928	

l65E Burton Rd Nest Didsbury							
Nest Didsbury		13	582				
-		Ba	lerno				-
420 2LN							Mir
Date 07/11/201	9	De	signer	l by JI	7.		- MIC
	n 200yr +CC Ba.		ecked	-	_		Drai
	II ZUUYI +CC Ba.			_	1 2019.	1	
Innovyze		50	urce (Joint LO.	1 2019.	1	
Sur	mmary of Result	s for	200 ye	ear Re	turn Pe	eriod (+30%))
	0 h a sum	N		M	M =	0 to to a	
	Storm Event	Max Level	Max Depth	Max	Max . Volume	Status	
	Lvenc	(m)	(m)	(1/s)	(m ³)		
		()	()	(=/ =/	()		
	60 min Winter				5120.8	O K	
	120 min Winter				6421.7		
	180 min Winter					Flood Risk	
	240 min Winter					Flood Risk	
	360 min Winter					Flood Risk	
	480 min Winter						
	600 min Winter						
	720 min Winter					Flood Risk	
	960 min Winter					Flood Risk	
	1440 min Winter					Flood Risk	
	2160 min Winter						
	2880 min Winter					Flood Risk	
	4320 min Winter	121.245	1.045				
	5760 min Winter					ОК	
	7200 min Winter	120.884	0.684	99.6	6 4607.8	ОК	
		120.884 120.749	0.684 0.549	99.6 99.5	6 4607.8	ОК	
	7200 min Winter 8640 min Winter	120.884 120.749 120.648 Rain	0.684 0.549 0.448	99.6 99.5 98.1 ded Dis	5 4607.8 5 3631.9 2928.4	ОК	
	7200 min Winter 8640 min Winter 10080 min Winter Storm	120.884 120.749 120.648 Rain	0.684 0.549 0.448 Floc	99.6 99.5 98.1 ded Dis	5 4607.8 5 3631.9 2928.4	0 K 0 K 0 K	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event	120.884 120.749 120.648 Rain (mm/h	0.684 0.549 0.448 Floc r) Volu	99.6 99.5 98.1 oded Dis ume V	<pre>5 4607.8 5 3631.9 2928.4 scharge ' colume (m³)</pre>	O K O K K Time-Peak (mins)	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2	0.684 0.549 0.448 Floc r) Volu (m 47	99.6 99.5 98.1 oded Dis ume V 3) 0.0	<pre>5 4607.8 5 3631.9 2928.4 scharge ' colume (m³) 5135.1</pre>	0 K 0 K 0 K Time-Peak (mins)	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4	0.684 0.549 0.448 Floc r) Volu (m 47 88	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0	<pre>5 4607.8 5 3631.9 2928.4 scharge ' olume (m³) 5135.1 6630.4</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2	0.684 0.549 0.448 Floc r) Volu (m 47 88 63	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0	<pre>5 4607.8 5 3631.9 2928.4 5 charge ' colume (m³) 5135.1 6630.4 7619.3</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0	<pre>5 4607.8 5 3631.9 2928.4 5 charge ' colume (m³) 5135.1 6630.4 7619.3 8372.0</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>6 4607.8 6 3631.9 2928.4 6 charge ' colume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 10.3	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 .0399.8</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte	120.884 120.749 120.648 Rair (mm/h. r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 8.9	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 .0399.8 1115.9</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 8.9 r 7.8	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 8.9 r 7.8 r 6.4	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47 22	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 0 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0 0.0 1 0 0.0 1 0 0 0.0 1 0 0 0 0	<pre>6 4607.8 6 3631.9 2928.4 6 colume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 .2687.3</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 8.9 r 7.8 r 6.4 r 4.8	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47 22 38	99.6 99.5 98.1 oded Dis 98.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 2687.3 3877.8</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884 1106	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 10.3 r 8.9 r 7.8 r 7.8 r 6.4 r 3.6	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47 22 38 45	99.6 99.5 98.1 oded Dis 98.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 0 0.0 1 0 0.0 1 0 1	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 2687.3 3877.8 6868.1</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884 1106 1580	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 140 min Winte 2160 min Winte 2880 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 10.3 r 8.9 r 7.8 r 6.4 r 4.8 r 3.6 r 2.9	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47 22 38 45 79	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0 0.0 1 0 0.0 1 0.0 1 0 1	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 2687.3 .3877.8 6868.1 8356.6</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884 1106	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 280 min Winte 4320 min Winte	120.884 120.749 120.648 Rair (mm/h r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 7.8 r 6.4 r 3.6 r 2.9 r 2.2 r 1.8	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47 22 38 45 79 37 24	99.6 99.5 98.1 98.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 1 0.0 100 1 0 1	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 2687.3 .3877.8 6868.1 8356.6 20569.4</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884 1106 1580 2028	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 960 min Winte 960 min Winte 2160 min Winte 2800 min Winte 4320 min Winte 5760 min Winte	120.884 120.749 120.648 Rair (mm/h r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 7.8 r 6.4 r 3.6 r 2.9 r 2.2 r 1.8	0.684 0.549 0.448 Floc r) Volu (m 47 88 63 94 65 91 05 47 22 38 45 79 37 24	99.6 99.5 98.1 oded Dis ume V 3) 0.0 0.0 0.0 0.0 0.0 0.0 100 1 0.0 1 0.0 1 0.0 1 0 0.0 10.0 100 1 0.0 100 1 0.0 100000000	<pre>5 4607.8 5 3631.9 2928.4 5 2928.4 5 clume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 2687.3 3877.8 6868.1 8356.6 20569.4 22696.0</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884 1106 1580 2028 2936	
	7200 min Winter 8640 min Winter 10080 min Winter Storm Event 60 min Winte 120 min Winte 120 min Winte 180 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 280 min Winte 4320 min Winte	120.884 120.749 120.648 Rair (mm/h: r 41.2 r 26.4 r 20.2 r 16.6 r 12.6 r 12.6 r 10.3 r 8.9 r 7.8 r 6.4 r 4.8 r 3.6 r 2.9 r 2.2 r 1.8 r 1.5	0.684 0.549 0.448 Floc r) Volt (m 47 88 63 94 65 91 05 47 22 38 45 79 37 24 56	99.6 99.5 98.1 98.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 1 0.0 100 1 0 0.0 1 0 0.0 1 0 0.0 1 0 0.0 1 0.0 1 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 10 0.0 100 0.0 10 0.0 10 0.0 10 0.0 10 0.0 100 0.0 100 0.0 10 0.0 00000000	<pre>6 4607.8 6 3631.9 2928.4 8 charge ' olume (m³) 5135.1 6630.4 7619.3 8372.0 9521.6 0399.8 1115.9 1719.7 2687.3 .3877.8 6868.1 8356.6 20569.4</pre>	0 K 0 K 0 K Time-Peak (mins) 68 126 184 242 356 470 582 688 884 1106 1580 2028 2936 3688	

©1982-2019 Innovyze

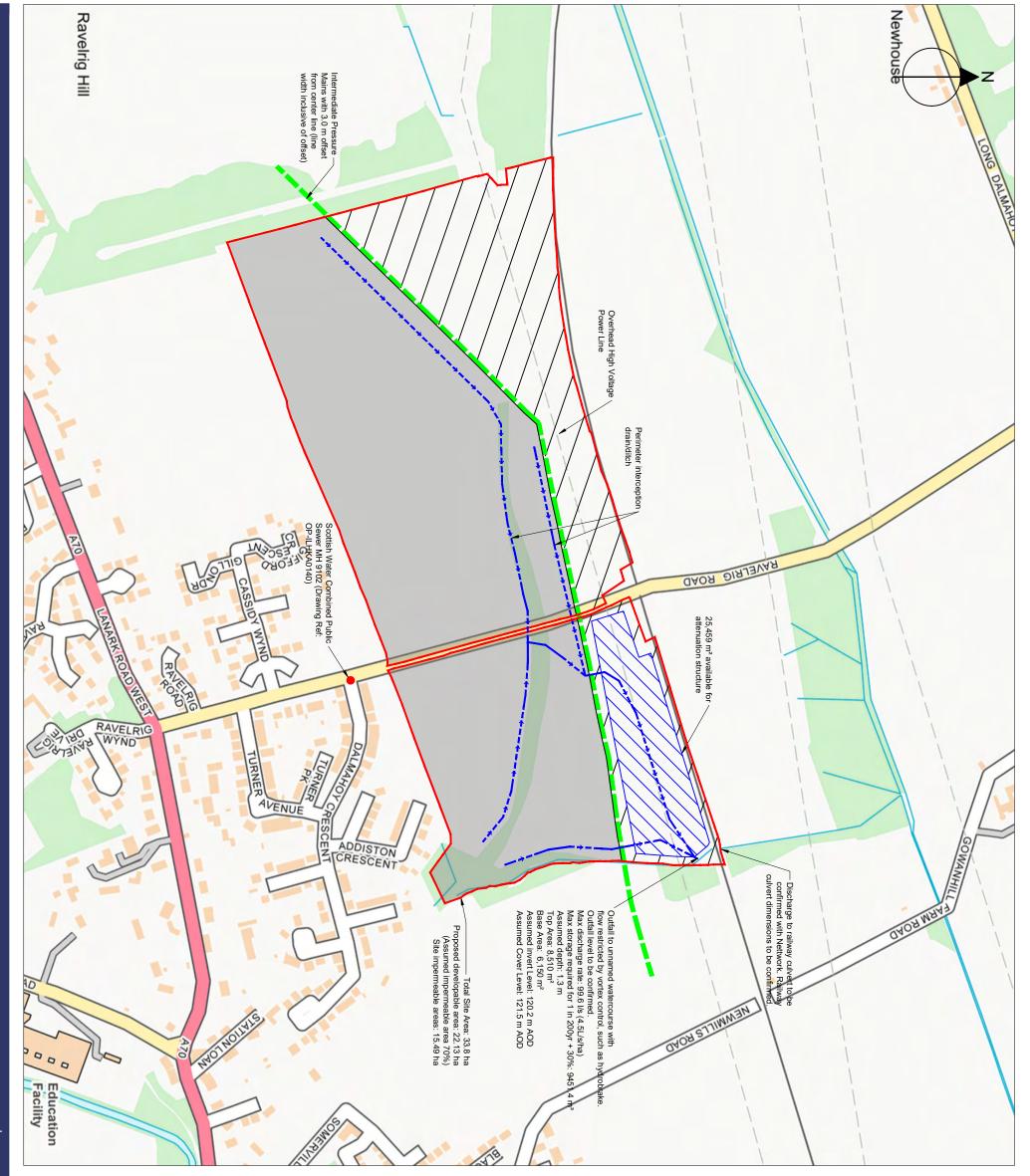
Ecus Ltd		Page 3
165E Burton Rd	13582	
West Didsbury	Balerno	
M20 2LN		Micro
Date 07/11/2019	Designed by JE	Drainago
File 13582-1 in 200yr +CC 1		Dramage
Innovyze	Source Control 2019.1	
	Rainfall Details	
Rainfall Model	FSR Winter St	
Return Period (years)		mmer) 0.750 nter) 0.840
M5-60 (mm)	13.700 Shortest Storm (i	
Ratio R	0.250 Longest Storm (r	
Summer Storms	Yes Climate Char	nge % +30
	Time Area Diagram	
	Total Area (ha) 15.490	
Time (mins) A From: To: ()		Area (ha)
0 4 5.		
0 10.		
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.000	
	Time (mins) Area From: To: (ha)	
	0 4 0.000	
	©1982-2019 Innovyze	

Ecus Ltd					I	Page 4
165E Burton R	.d	13582			[
West Didsbury		Balerno				-
420 2LN						Micro
Date 07/11/20	19	Designed	by JE			Micro
	in 200yr +CC Ba	_	-			Drainag
		Source Co	-	2010 1		2
Innovyze			JIICIOI	2019.1		
		Model Deta	ils			
	Storage is C	Online Cover 1	Level (1	m) 121.500		
	Tank	k or Pond St	tructu	re		
	Inv	ert Level (m)	120.20	0		
	Depth (m) A	area (m²) Dep	th (m) .	Area (m²)		
	0.000	6150.0	1.300	8509.5		
	Hydro-Brake	® Optimum (Outflo	w Control		
	Unit Reference			MD-SHE-C	390-9960-	1300-9960
	Design Head (m)					1.300
	Design Flow (l/s)					99.6
	Flush-Flo™					alculated
	Objective Application			Minimis	e upstrea	m storage Surface
	Sump Available					Yes
	Diameter (mm)					390
	Invert Level (m)					120.200
Minimum Outle	et Pipe Diameter (mm)					450
Suggested M	Manhole Diameter (mm)	Site Specifi	c Desig	n (Contact Hy	dro Inter	national)
	Control	Points H	Head (m)) Flow (l/s)		
	Design Point (Calculated)	1.300	99.6		
		Flush-Flo™	0.58	7 99.6		
		Kick-Flo®	1.022	2 88.6		
	Mean Flow over	Head Range		- 79.9		
Hydro-Brake® (cal calculations have Optimum as specified. ptimum® be utilised t	Should anot	her typ	e of control	device ot	her than a
invalidated						low (1/s)
invalidated	ow (l/s) Depth (m) Fl	.ow (1/s) Dept	th (m)	Flow (l/s) De	pth (m) F	
invalidated Depth (m) Flo 0.100	10.8 1.200	95.8	3.000	149.6	7.000	226.5
invalidated Depth (m) Flo 0.100 0.200	10.8 1.200 38.6 1.400	95.8 103.2	3.000 3.500	149.6 161.3	7.000	234.3
invalidated Depth (m) Flo 0.100 0.200 0.300	10.8 1.200 38.6 1.400 74.0 1.600	95.8 103.2 110.2	3.000 3.500 4.000	149.6 161.3 172.2	7.000 7.500 8.000	234.3 241.9
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800	95.8 103.2 110.2 116.7	3.000 3.500 4.000 4.500	149.6 161.3 172.2 182.4	7.000 7.500 8.000 8.500	234.3 241.9 249.2
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000	95.8 103.2 110.2 116.7 122.8	3.000 3.500 4.000 4.500 5.000	149.6 161.3 172.2 182.4 192.1	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200	95.8 103.2 110.2 116.7 122.8 128.6	3.000 3.500 4.000 4.500 5.000 5.500	149.6 161.3 172.2 182.4 192.1 201.3	7.000 7.500 8.000 8.500	234.3 241.9 249.2
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000	95.8 103.2 110.2 116.7 122.8	3.000 3.500 4.000 4.500 5.000	149.6 161.3 172.2 182.4 192.1	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000	149.6 161.3 172.2 182.4 192.1 201.3 210.0	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3
invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800	10.8 1.200 38.6 1.400 74.0 1.600 96.6 1.800 99.0 2.000 99.6 2.200 97.2 2.400 90.0 2.600	95.8 103.2 110.2 116.7 122.8 128.6 134.2	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	149.6 161.3 172.2 182.4 192.1 201.3 210.0 218.5	7.000 7.500 8.000 8.500 9.000	234.3 241.9 249.2 256.3

Appendix 7 – CEC Surface Water Management Checklist

	Item	Provided? (Y/N)	Submission Section Reference	If N comment reason
1	Location Plan.	Y	Section 3.1	
2	Pre development overland flow path arrows for site and surrounding land .	Y	Appendix 2	
3	Area of impermeable surface in proposed development.	Y	Section 6.2 Section 6.4	
4	Greenfield runoff calculations for impermeable area.	Y	Section 6.4 and Appendix 5	
5	Confirmation that attenuation is provided to allow 200yr+CC discharge at the lesser of *: 1:2 year greenfield runoff rate; 4.5 l/s/ha of <u>impermeable area.</u> *Subject to minimum 75mmØ flow control (3l/s)	Y	Section 6.6 and Appendix 6	
6	Volume of attenuation required to allow discharge at greenfield rate (m ³). Volume of attenuation provided within the proposed drainage layout (m ³).	Y	9451.4m3 9451.4m3	-
7	 Hand calculations or Hydraulic modelling outputs with pipes included¹ and 30year+CC and 200year +CC outputs. (1000year+CC for civil infrastructure²). 	N		Outline Application
8	Drainage drawing with manhole numbers that cross reference with the hydraulic modelling outputs.	N		Outline Application
9	Confirmation that 30year +CC event remains below ground and that 200year +CC remains attenuated on site safely ³ .	Y	Section 6.6 and Appendix 6	
10	Post development flow paths for site and surrounding area (on separate plan to pre development) ⁴ .	Y	Appendix 3	
11	Confirmation of who will adopt and maintain the surface water system including SuDS.	N		Outline Application
12	Confirmation where the surface water ultimately discharges.	Y	Section 6.2	
13	Confirmation that appropriate water quality measures (SuDS treatment) is included in the design in line with relevant guidance.		Section 6.2 and 6.3	
14	If discharging surface water to public sewer - confirmation that Scottish Water agree in principal to proposed connection.	N		Not Discharging to Public Sewer
15	Does the proposed design take cognisance of Section 3.7 Water Environment (Edinburgh Design Guidance) and Policies Des 5 City Local Plan, E44 Rural West Local Plan and Des 8 Edinburgh Local Development Plan?	Y tione W/here	Overarching Report	

¹ Pipe network only required for FUL and AMC applications. Where part of a larger strategy attenuation network then this must all be represented. For PPP applications minimum requirements are total storage volume and subsequent to-scale representation and location shown on plan layout. ² Refer to SPP for definition of civil infrastructure.


³ All property FFLs are 600mm above this 200-year water level.

⁴ For PPP applications where the site layout has not been finalised, an indication of the general intention for overland water flow paths should be presented.

Drawing 1 – 13582/001– Conceptual Drainage Strategy – Indicative

လွ

Brook Holt = Blackburn Road = Sheffield = S61 2DW tel: 0114 266 9292 = www.ecustd.co.uk

Strategy - Indicative Arrangement Outline Surface Water Drainage

Balerno

Rapleys LLP

Scottish Water Combined Sewer MH Assumed Developable Area Area Available for Attenuation Assumed Undeveloped Area High Voltage Power Line Intermediate Pressure Gas Main

SW Ditch or Swale

ი. ب Drawing should be read in conjunction with Report 13582/FRA/001.

- Surface Water calculations performed in MicroDrainage. Attached as Appendix 5 and 6 to 13582/FRA/001.
- .7

Site Boundary

- 4. The maximum area available for attenuation indicated within the plan and is not representative of the actual area required for storage for surface water runoff.

μ

The drainage network is assumed to consist of a combination of ditches, swales and filter trenches. The network has not currently been sized.

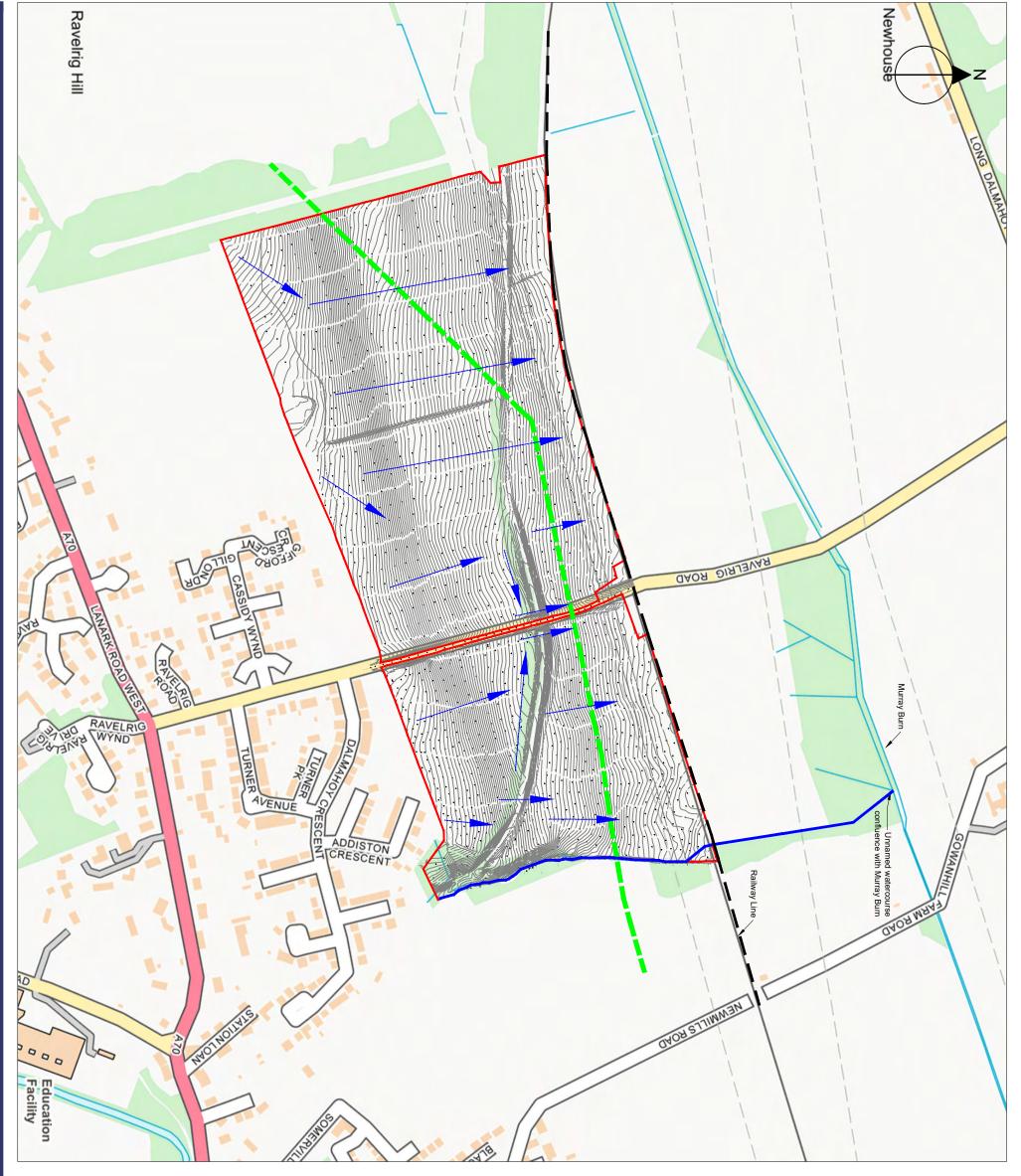
2

The proposed development area is indicative only and following the completion of a site layout masterplan, the associated drainage network should be updated to reflect drainage needs of the site layout.

.____

- In the absence of site levels a fall towards the drainage network has been assumed.

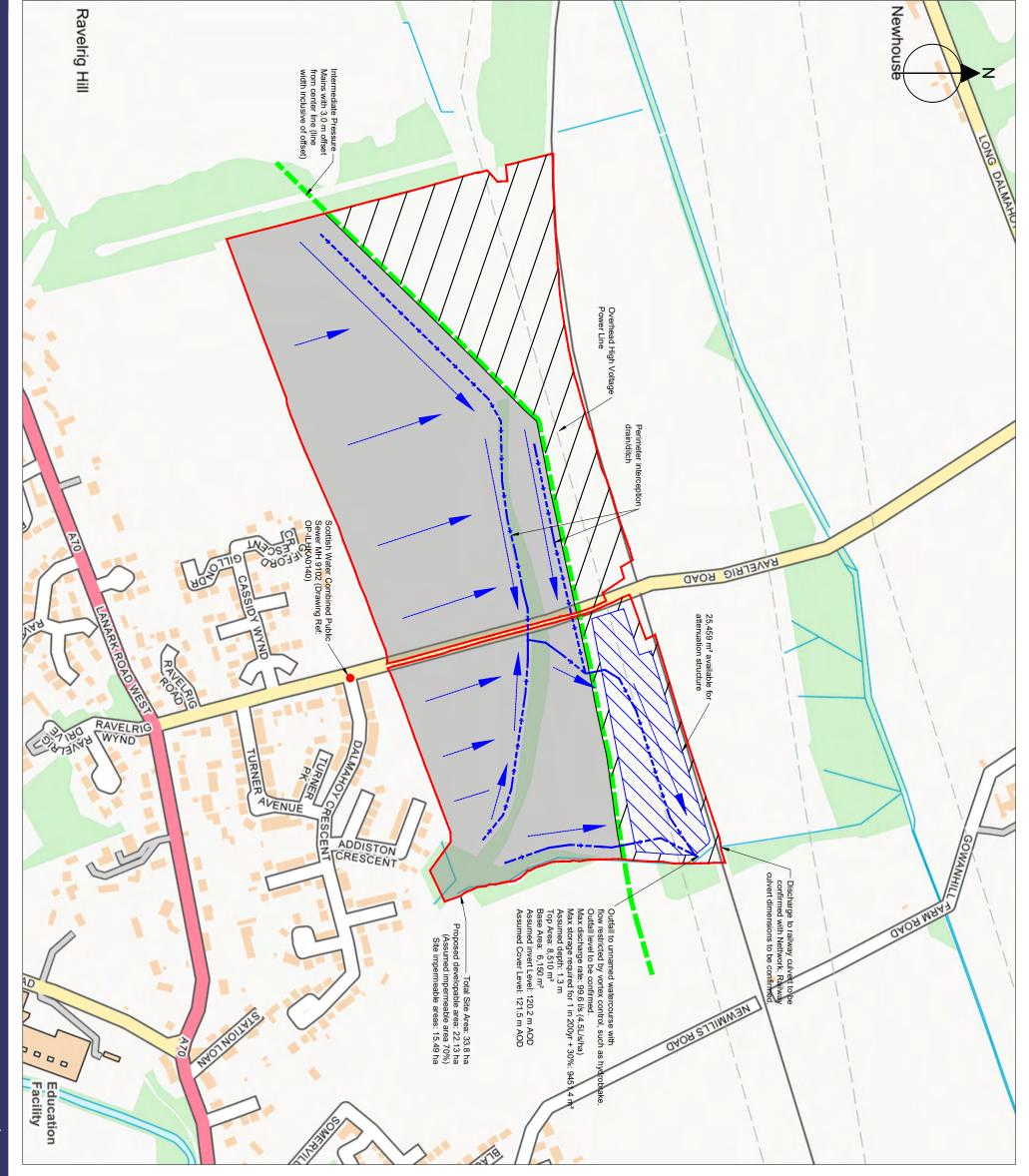
Do not scale from drawing. Indicative only, not issued for construction. All units in meters unless otherwise indicated.



Drawing 2 – 13582/002– Flow Paths Pre-Development

Scale: 1:5000@ A3

Drg. Ref: 13582/002



■Brook Holt ■ Blackburn Road ■ Sheffield ■ S61 2DW ■tel: 0114 266 9292 ■ www.ecusltd.co.uk	Flow Paths Pre-Development	Balerno	Rapleys LLP		— — — Intermediate Pressure Gas Main	——— Railway Line	Existing Watercourse	Site Boundary	Overland Surface Water Flow Path	 Drawing should be read in conjunction with Report 13582/FRA/001. 	1. Do not scale from drawing. Indicative only, not issued for construction. All units in meters unless otherwise indicated.		ENVIRONMENTAL CONSULTANTS	
---	----------------------------	---------	-------------	--	--------------------------------------	------------------	----------------------	---------------	----------------------------------	--	---	--	---------------------------	--

Drawing 3 – 13582/003– Flow Paths Post-Development

လွ

Drg. Ref: 13582/003

■Brook Holt ■ Blackburn Road ■ Sheffield ■ S61 2DW ■tel: 0114 266 9292 ■ www.ecustd.co.uk

Post-Development Assumed Flow Paths

Balerno

Rapleys LLP

Scottish Water Combined Sewer MH

Area Available for Attenuation Intermediate Pressure Gas Main SW Ditch or Swale High Voltage Power Line Assumed Undeveloped Area Assumed Developable Area

In the absence of site levels a fall towards the drainage network has been assumed.

Site Boundary

.7

6.

Surface Water calculations performed in MicroDrainage. Attached as Appendix 5 and 6 to 13582/FRA/001.

ۍ.

Drawing should be read in conjunction with Report 13582/FRA/001.

4.

The maximum area available for attenuation indicated within the plan and is not representative of the actual area required for storage for surface water runoff.

ŝ

The drainage network is assumed to consist of a combination of ditches, swales and filter trenches. The network has not currently been sized.

2

The proposed development area is indicative only and following the completion of a site layout masterplan, the associated drainage network should be updated to reflect drainage needs of the site layout.

.____

Do not scale from drawing. Indicative only, not issued for construction. All units in meters unless otherwise indicated.

ENVIRONMENTAL

CONSULTANTS

Surface Water Flow Path